偏移进化蜉蝣优化算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

宁波市自然科学基金(202003N4159); 国家级大学生创新创业训练计划(202013277008)


Migration Evolutionary Mayfly Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    蜉蝣算法是一种受蜉蝣飞行及交配行为启发的新型群智能优化算法, 具有良好的寻优性能, 但其在求解高维复杂问题时依然存在因失效蜉蝣而影响算法效率的问题. 鉴于此, 提出一种偏移进化蜉蝣算法(migration evolutionary mayfly algorithm, MEMA). 针对蜉蝣种群进行个体能力评价, 剔除种群中生命周期较长但进化能力较弱的个体, 同时以其为据点进行全局位置偏移, 以获取新生个体. 对新个体进行指向性动态进化训练, 从而提升种群整体优化能力. 最后在Matlab环境下, 随机抽取了6个benchmark测试函数设计仿真实验以验证MEMA算法的有效性, 实验结果表明, 相比于其他5种对比算法, MEMA算法在低维及高维函数测试中均能更好地实现最优解搜索, 在收敛精度、收敛速度以及鲁棒性等方面均具备一定优势.

    Abstract:

    The mayfly algorithm is a new type of swarm intelligence optimization algorithm inspired by mayfly flight and mating behavior. It has good optimization performance, but its efficiency is affected by failure mayflies when faced with high-dimensional and complex problems. In view of this, a migration evolutionary mayfly algorithm (MEMA) is proposed in this paper. First, the individual ability of the mayfly population is evaluated, and individuals with a long life-cycle but weaker evolutionary ability are eliminated from the population. At the same time, with those eliminated ones as strongholds, a global position shift is performed on the mayfly population to obtain new individuals. Then, directional dynamic evolution training is carried out on new individuals to improve the overall optimization ability of the population. Finally, in the Matlab environment, six benchmark test functions are randomly selected to design simulation experiments for the effectiveness verification of the MEMA algorithm. The experimental results show that compared with the other five comparison algorithms, the MEMA algorithm outperforms in both low-dimensional and high-dimensional function tests for the optimal solution search, and it has advantages in convergence accuracy, convergence speed, and robustness.

    参考文献
    相似文献
    引证文献
引用本文

王克逸,符强,陈嘉豪.偏移进化蜉蝣优化算法.计算机系统应用,2022,31(3):150-158

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-20
  • 最后修改日期:2021-06-14
  • 录用日期:
  • 在线发布日期: 2022-01-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号