摘要:蜉蝣算法是一种受蜉蝣飞行及交配行为启发的新型群智能优化算法, 具有良好的寻优性能, 但其在求解高维复杂问题时依然存在因失效蜉蝣而影响算法效率的问题. 鉴于此, 提出一种偏移进化蜉蝣算法(migration evolutionary mayfly algorithm, MEMA). 针对蜉蝣种群进行个体能力评价, 剔除种群中生命周期较长但进化能力较弱的个体, 同时以其为据点进行全局位置偏移, 以获取新生个体. 对新个体进行指向性动态进化训练, 从而提升种群整体优化能力. 最后在Matlab环境下, 随机抽取了6个benchmark测试函数设计仿真实验以验证MEMA算法的有效性, 实验结果表明, 相比于其他5种对比算法, MEMA算法在低维及高维函数测试中均能更好地实现最优解搜索, 在收敛精度、收敛速度以及鲁棒性等方面均具备一定优势.