基于联邦学习和改进ResNet的肺炎辅助诊断
作者:

Assisted Diagnosis of Pneumonia Based on Federated Learning and Improved ResNet
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对目前基于批量归一化的ResNet肺炎辅助诊断方法对于批量大小具有较高依赖性、网络通道特征利用率较低, 并针对采用深度神经网络的肺炎诊断方法都忽略了医疗数据隐私和孤岛的问题, 提出一种融合联邦学习框架、压缩激励网络和改进ResNet的辅助诊断方法(FL-SE-ResNet-GN), 运用联邦学习保护数据隐私的同时结合压缩激励网络和组归一化方式充分关注通道特征. 通过Chest X-Ray Images数据集的实验结果表明, 该方法的准确率、精度和召回率分别达到0.952、0.933和0.974. 与其它现有方法相比, 该方法在保护数据隐私的基础上准确率和召回率指标具有明显提升.

    Abstract:

    The current assisted pneumonia diagnosis method using the residual network (ResNet) based on batch normalization has high dependence on the batch size and a low utilization rate of network channel features, and pneumonia diagnosis methods using deep neural networks all ignore the problems of medical data privacy and islands. To solve these problems, this study proposes an assisted diagnosis method that integrates the federated learning framework, the squeeze-and-excitation network, and the improved ResNet (FL-SE-ResNet-GN). This method uses FL to protect data privacy and pays full attention to channel characteristics with the SE network and the group normalization method. Experimental results on the Chest X-Ray Images dataset show that the accuracy, precision, and recall of this method reach 0.952, 0.933, and 0.974, respectively. Compared with other existing methods, this method has significantly improved the accuracy and recall indicators on the basis of protecting data privacy.

    参考文献
    [1] Kosasih K, Abeyratne U. Correction to: Exhaustive mathematical analysis of simple clinical measurements for childhood pneumonia diagnosis. World Journal of Pediatrics, 2019, 15(6): 626. [doi: 10.1007/s12519-019-00262-2
    [2] Ibrahim DM, Elshennawy NM, Sarhan AM. Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases. Computers in Biology and Medicine, 2021, 132: 104348. [doi: 10.1016/j.compbiomed.2021.104348
    [3] Syrjala H, Broas M, Ohtonen P, et al. Chest magnetic resonance imaging for pneumonia diagnosis in outpatients with lower respiratory tract infection. European Respiratory Journal, 2017, 49(1): 1601303. [doi: 10.1183/13993003.01303-2016
    [4] Chouhan V, Singh SK, Khamparia A, et al. A novel transfer learning based approach for pneumonia detection in chest X-ray images. Applied Sciences, 2020, 10(2): 559. [doi: 10.3390/app10020559
    [5] 潘丽艳, 梁会营. 基于深度学习的儿童肺炎病原学类型判别模型. 中国数字医学, 2019, 14(3): 59–61, 110. [doi: 10.3969/j.issn.1673-7571.2019.03.017
    [6] Al-Antari MA, Hua CH, Bang J, et al. Fast deep learning computer-aided diagnosis of COVID-19 based on digital chest X-ray images. Applied Intelligence, 2021, 51(5): 2890–2907. [doi: 10.1007/s10489-020-02076-6
    [7] 何新宇, 张晓龙. 基于深度神经网络的肺炎图像识别模型. 计算机应用, 2019, 39(6): 1680–1684. [doi: 10.11772/j.issn.1001-9081.2018102112
    [8] 苏赋, 吕沁, 罗仁泽. 基于深度学习的图像分类研究综述. 电信科学, 2019, 35(11): 58–74. [doi: 10.11959/j.issn.1000-0801.2019268
    [9] 张婷婷, 章坚武, 郭春生, 等. 基于深度学习的图像目标检测算法综述. 电信科学, 2020, 36(7): 92–106. [doi: 10.11959/j.issn.1000-0801.2020199
    [10] Mao J, Cao CJ, Wang LJ, et al. Research on the security technology of federated learning privacy preserving. Journal of Physics: Conference Series, 2021, 1757: 012192. [doi: 10.1088/1742-6596/1757/1/012192
    [11] Kaissis GA, Makowski MR, Rückert D, et al. Secure, privacy-preserving and federated machine learning in medical imaging. Nature Machine Intelligence, 2020, 2(6): 305–311. [doi: 10.1038/s42256-020-0186-1
    [12] Li LF, Wang YR. Improved LeNet-5 convolutional neural network traffic sign recognition. International Core Journal of Engineering, 2021, 7(4): 114–121. [doi: 10.6919/ICJE.202104_7(4).0017
    [13] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84–90. [doi: 10.1145/3065386
    [14] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv: 1409.1556, 2014.
    [15] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016. 770–778.
    [16] Hu J, Shen L, Sun G. Squeeze-and-excitation networks. arXiv: 1709.01507, 2018.
    [17] Wu YX, He KM. Group normalization. arXiv: 1803.08494, 2018.
    [18] Kermany DS, Goldbaum M, Cai WJ, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell, 2018, 172(5): 1122–1131. [doi: 10.1016/j.cell.2018.02.010
    [19] Liang GB, Zheng LX. A transfer learning method with deep residual network for pediatric pneumonia diagnosis. Computer Methods and Programs in Biomedicine, 2020, 187: 104964. [doi: 10.1016/j.cmpb.2019.06.023
    [20] Geng L, Zhang SQ, Tong J, et al. Lung segmentation method with dilated convolution based on VGG-16 network. Computer Assisted Surgery, 2019, 24(S2): 27–33. [doi: 10.1080/24699322.2019.1649071
    [21] 邓棋, 雷印杰, 田锋. 用于肺炎图像分类的优化卷积神经网络方法. 计算机应用, 2020, 40(1): 71–76. [doi: 10.11772/j.issn.1001-9081.2019061039
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曹润芝,韩斌,刘嘎琼.基于联邦学习和改进ResNet的肺炎辅助诊断.计算机系统应用,2022,31(2):227-233

复制
分享
文章指标
  • 点击次数:936
  • 下载次数: 1981
  • HTML阅读次数: 1710
  • 引用次数: 0
历史
  • 收稿日期:2021-04-16
  • 最后修改日期:2021-06-08
  • 在线发布日期: 2022-01-28
文章二维码
您是第11206990位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号