基于无线环境图信息辅助的多循环频率协作频谱感知方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61671375)


Multi-cycle-frequency Cooperative Spectrum Sensing Method Based on Radio Environment Map Information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对频谱感知中单循环频率检测不能充分利用信号循环谱信息的缺点, 本文提出一种基于无线环境图(radio environment map, REM)信息辅助的多循环频率协作频谱感知方法. 本文方法第1步在多个认知用户处分别选取多个相同的循环频率进行循环平稳检测, 选取谱相关函数幅度作为检测统计量, 根据推导的判决门限公式设定恒虚警概率时的门限值, 经判决融合得出单个认知用户处的检测结果; 第2步根据REM提供的授权用户与认知用户之间的距离信息计算各认知节点处的权值系数, 并通过与对应节点处的检测结果加权融合来提高检测结果的可信度. 仿真结果表明, 改进方法能有效检测到授权用户, 在低信噪比条件下有更好的检测性能且具有更强的实用性.

    Abstract:

    Given that single-cycle frequency detection cannot make full use of the cyclic spectrum information in spectrum sensing, this study proposes a multi-cycle frequency cooperative spectrum sensing method based on radio environment map (REM) information. The first step of this method is to select multiple same cyclic frequencies at multiple cognitive users for cyclostationary detection. The spectral correlation function amplitude is adopted as the detection statistic. The threshold value at a constant false-alarm rate (CFAR) is set according to the derived decision threshold formula, and the detection result at a single cognitive user is obtained through decision fusion. In the second step, the weight coefficient at each cognitive node is calculated according to the distance between the authorized user and the cognitive user provided by the REM. Weighted fusion of the weight coefficients and the detection results of the corresponding nodes are conducted to improve the reliability of the detection results. Simulation results show that the improved method can effectively detect authorized users and has better detection performance and stronger practicability under a low signal-to-noise ratio (SNR).

    参考文献
    相似文献
    引证文献
引用本文

刘高辉,马李庆.基于无线环境图信息辅助的多循环频率协作频谱感知方法.计算机系统应用,2022,31(2):260-266

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-04-27
  • 最后修改日期:2021-05-28
  • 录用日期:
  • 在线发布日期: 2022-01-28
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号