基于SVM-KNN算法的情绪脑电识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山东省科技厅重大创新工程(2019JZZY011111);全国大学生创新训练项目(S202010446028)


Emotion Classification Using EEG Signals Based on SVM-KNN Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    情绪识别与日常生活的诸多领域都有很大联系. 然而, 通过单一算法难以获得较高的情绪识别准确率, 为此, 提出一种基于支持向量机(support vector machine, SVM)和K近邻(K-nearest neighbors, KNN)融合算法(SVM-KNN)的情绪脑电识别模型. 在情绪分类时, 首先计算待识别样本与最优分类超平面的空间距离, 若两者距离大于提前设定的阈值, 选用SVM分类器对情绪样本分类, 否则选用KNN分类器. 最后在SEED情感数据集上进行实验测试, 通过对比实验, 得出SVM-KNN算法提高了情绪三分类的准确率. 运用该模型可有效地对情绪类型进行识别, 对于医疗护理方面获取表达障碍患者的情绪状态有积极意义.

    Abstract:

    Emotion recognition is closely related to many facets of our daily lives. However, it is difficult to achieve a satisfying emotion recognition rate by using one single algorithm. Therefore, this study puts forward an emotion recognition model based on electroencephalogram (EEG) with a fusion algorithm that combines the support vector machine (SVM) algorithm with the K-nearest neighbors algorithm (SVM-KNN). In the emotion classification process, the spatial distance between the sample to be identified and the optimal classification hyperplane is calculated. If it is longer than the preset threshold, the SVM classifier is chosen to classify the emotion records. Otherwise, the KNN classifier is chosen. Finally, experiments are carried out on the SJTU emotion EEG dataset (SEED). The comparative experiments show that the SVM-KNN algorithm improves the accuracy of the three-emotion classification. This model can effectively identify the types of emotions and thus has positive significance in obtaining the emotions of patients with expression disorders in medical care.

    参考文献
    相似文献
    引证文献
引用本文

滕凯迪,赵倩,谭浩然,郑金和,董宜先,单洪芳.基于SVM-KNN算法的情绪脑电识别.计算机系统应用,2022,31(2):298-304

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-04-26
  • 最后修改日期:2021-05-19
  • 录用日期:
  • 在线发布日期: 2022-01-28
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号