摘要:情绪识别与日常生活的诸多领域都有很大联系. 然而, 通过单一算法难以获得较高的情绪识别准确率, 为此, 提出一种基于支持向量机(support vector machine, SVM)和K近邻(K-nearest neighbors, KNN)融合算法(SVM-KNN)的情绪脑电识别模型. 在情绪分类时, 首先计算待识别样本与最优分类超平面的空间距离, 若两者距离大于提前设定的阈值, 选用SVM分类器对情绪样本分类, 否则选用KNN分类器. 最后在SEED情感数据集上进行实验测试, 通过对比实验, 得出SVM-KNN算法提高了情绪三分类的准确率. 运用该模型可有效地对情绪类型进行识别, 对于医疗护理方面获取表达障碍患者的情绪状态有积极意义.