基于MobileNet与YOLOv3的路面障碍检测轻量化算法
作者:

Lightweight Algorithm of Road Obstacle Detection Based on MobileNet and YOLOv3
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了避免人们边行走边使用手机发生危险, 本文提出了实时性强的轻量级模型(Mobile-YOLOv3)来检测路面障碍. 我们在广州各地拍摄路障图片并标注了一个路障数据集, 使用了一个轻量级的MobileNetv1网络来替换YOLOv3的骨干网络实现轻量化, 并且应用了4个方法用于提高检测精度和模型的鲁棒型. 4个方法分别为: 边框回归损失函数CIOU、分类损失函数Focal、预测框筛选算法Soft-NMS、负样本训练. 实验结果证明, 该模型获得了98.84% 的MAP. 与YOLOv3对比, 该模型的规模缩减了2.5倍, 检测精度却提高了7%.

    Abstract:

    To avoid the danger of people using mobile phones while walking, this study proposes a lightweight model (Mobile-YOLOv3) with strong real-time performance to detect road obstacles. We photograph roadblocks and annotate a roadblock data set around Guangzhou City. Lightweight is achieved by the replacement of the backbone network of YOLOv3 with a lightweight MobileNetv1 network. In addition, we apply four methods to improve detection accuracy and model robustness, i.e., border regression loss function CIOU, classification loss function Focal, prediction box screening algorithm Soft-NMS, and negative sample training. The experimental results show that the model obtains 98.84% MAP. Compared with YOLOv3, this model has the scale reduced by 2.5 times but the detection accuracy improved by 7%.

    参考文献
    [1] 吴欧, 刘庆敏, 赵江磊, 等. 杭州市中学生步行时使用电子设备行为调查. 中国学校卫生, 2017, 38(10): 1489–1492
    [2] 谷宇. 基于智能手机的步行安全警报系统[硕士学位论文]. 南京: 南京大学, 2018.
    [3] Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Kauai: IEEE, 2001. I-511–I-518
    [4] Dalal N, Triggs B. Histograms of oriented gradients for human detection. Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005. 886–893.
    [5] Felzenszwalb P, McAllester D, Ramanan D. A discriminatively trained, multiscale, deformable part model. Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage: IEEE, 2008. 1–8.
    [6] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot MultiBox detector. Proceedings of the 14th European Conference on Computer Vision. Amsterdam: Springer, 2016. 21–37.
    [7] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016. 779–788.
    [8] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014. 580–587.
    [9] Girshick R. Fast R-CNN. Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015. 1440–1448.
    [10] Dai JF, Li Y, He KM, et al. R-FCN: Object detection via region-based fully convolutional networks. arXiv: 1605.06409, 2016.
    [11] Redmon J, Farhadi A. YOLOv3: An incremental improvement. arXiv: 1804.02767, 2018.
    [12] Howard AG, Zhu ML, Chen B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv: 1704.04861, 2017.
    [13] Zheng ZH, Wang P, Liu W, et al. Distance-IoU loss: Faster and better learning for bounding box regression. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993–13000. [doi: 10.1609/aaai.v34i07.6999
    [14] Lin TY, Goyal P, Girshick R, et al. Focal loss for dense object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318–327. [doi: 10.1109/TPAMI.2018.2858826
    [15] Bodla N, Singh B, Chellappa R, et al. Improving object detection with one line of code. arXiv: 1704.04503, 2017.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

齐永康.基于MobileNet与YOLOv3的路面障碍检测轻量化算法.计算机系统应用,2022,31(2):176-184

复制
分享
文章指标
  • 点击次数:1016
  • 下载次数: 2567
  • HTML阅读次数: 4463
  • 引用次数: 0
历史
  • 收稿日期:2021-04-19
  • 最后修改日期:2021-05-19
  • 在线发布日期: 2022-01-28
文章二维码
您是第11208384位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号