摘要:汉字书法是中华传统文化的代表, 但是, 由于书法字体具有风格迥异、结构复杂、变形繁多等特点, 给大众学习和欣赏书法带来了极大障碍. 为了解决普通老百姓解读书法作品的困难, 提出一种基于改进DenseNet网络的书法字体识别算法, 设计区域权值比例池化规则替换传统DenseNet网络的最大池化和平均池化规则, 采用Nadam算法优化模型训练效果, 进行自适应学习率调整, 此外, 提出基于剪枝技术的模型裁剪策略, 在保证识别性能的同时, 提高了模型的训练效率. 实验结果表明, 在由楷书、行书、隶书和篆书4类字体组成的混合字体数据集中, 本文算法获得了96.13%的识别率, 优于另外5种深度学习模型.