摘要:我国是农业大国, 在进行农业生产过程中, 对土壤的湿度进行精准预测具有非常重要的意义. 针对传统BP (back propagation)神经网络在预测过程中会出现局部最小化以及收敛速度慢的问题, 本文将改进的遗传算法(genetic algorithm)应用到传统BP神经网络模型当中, 提出了一种自适应遗传算法优化BP神经网络的土壤湿度预测方法. 通过Matlab仿真软件建立改进遗传算法优化BP神经网络的预测模型, 并且对哈尔滨地区玉米地的土壤湿度进行实验. 结果表明, 该模型的精度高于未优化的BP神经网络. 该模型能够大量减少湿度传感器的使用, 为农业生产减少了成本.