基于改进遗传算法优化BP神经网络的土壤湿度预测模型
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

中央引导地方科技发展项目(SBZY2021E006)


Optimized BP Neural Network Model Based on Improved Genetic Algorithm for Soil Moisture Prediction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    我国是农业大国, 在进行农业生产过程中, 对土壤的湿度进行精准预测具有非常重要的意义. 针对传统BP (back propagation)神经网络在预测过程中会出现局部最小化以及收敛速度慢的问题, 本文将改进的遗传算法(genetic algorithm)应用到传统BP神经网络模型当中, 提出了一种自适应遗传算法优化BP神经网络的土壤湿度预测方法. 通过Matlab仿真软件建立改进遗传算法优化BP神经网络的预测模型, 并且对哈尔滨地区玉米地的土壤湿度进行实验. 结果表明, 该模型的精度高于未优化的BP神经网络. 该模型能够大量减少湿度传感器的使用, 为农业生产减少了成本.

    Abstract:

    China is a large agricultural country. In the process of agricultural production, it is of great significance to accurately predict the soil moisture. In view of the local minimization and slow convergence in the prediction process of the traditional back propagation (BP) neural network, an improved genetic algorithm is applied to the traditional BP neural network model in this study. A soil moisture prediction method is proposed that optimizes the BP neural network by the adaptive genetic algorithm. A prediction model of the BP neural network optimized by the improved genetic algorithm is established by the Matlab simulation software and experimented on the soil moisture of corn fields in Harbin. The results show that the accuracy of the model is higher than that of the unoptimized BP neural network model. This model can greatly reduce the use of moisture sensor and thus reduce the agricultural production cost.

    参考文献
    相似文献
    引证文献
引用本文

王佳楠,王玉莹,何淑林,时龙闽,张艳滴,孙海洋,刘勇.基于改进遗传算法优化BP神经网络的土壤湿度预测模型.计算机系统应用,2022,31(2):273-278

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-04-20
  • 最后修改日期:2021-05-19
  • 录用日期:
  • 在线发布日期: 2022-01-28
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号