双机器人协同控制研究综述
作者:
基金项目:

陕西省重点研发计划(2020NY-116)


Review on Dual-robot Cooperative Control
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [70]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    多机器人协同是未来机器人研究的一大热点, 双机器人系统是其中的一个典型代表. 针对目前双机器人协同系统的特性及常见应用, 从动力学模型的建立、轨迹规划和协同控制等3方面介绍了双机器人协同系统的研究内容, 分析各方面目前存在的技术漏洞和技术难点, 指出未来发展的方向.

    Abstract:

    Multi-robot coordination is one of the hot spots in future robot research, with dual-robot systems acting as a typical representative. According to the characteristics and common applications of dual-robot cooperative systems, this study introduces the research contents on these systems from three aspects, namely the establishment of dynamic models, trajectory planning and cooperative control. Moreover, it analyzes the technical vulnerability and difficulties in various aspects at present and points out the future development direction.

    参考文献
    [1] Zivanovic MD, Vukobratovic MK. Multi-Arm Cooperating Robots: Dynamics and Control. Springer Science & Business Media, 2005.
    [2] 顾新兴, 孙燕朴, 冯纯伯. 多机器人协调系统研究综述. 系统工程与电子技术, 1994, (12): 9–20.
    [3] 周东健, 张兴国, 李成浩. 多机器人系统协同作业技术发展近况与前景. 机电技术, 2013, 36(6): 146–150.
    [4] Dickson WC. Experiments in cooperative manipulation of objects by free-flying robot teams [Ph.D. Thesis]. Stanford: Stanford University, 1994.
    [5] Jou YT. Human-robot interactive control [Ph.D. Thesis]. Ohio: Ohio University, 2003.
    [6] Bererton CA. Multi-robot coordination and competition using mixed integer and linear programs [Ph.D. Thesis]. Pittsburgh: Carnegie Mellon University, 2004.
    [7] 高为炳. 多机器人系统的动力学与协调控制. 控制与决策, 992, 7(3): 161–168.
    [8] 杜兆才, 邹方. 多机器人协调操作系统实现飞机大型部件对接的轨迹规划. 航空制造技术, 2009, (24): 88–91.
    [9] Basile F, Caccavale F, Chiacchio P, et al. Task-oriented motion planning for multi-arm robotic systems. Robotics and Computer-Integrated Manufacturing, 2012, 28(5): 569–582.
    [10] Damaren CJ. An adaptive controller for two cooperating flexible manipulators. Journal of Robotic Systems, 2003, 20(1): 15–21.
    [11] Cetin AE, Adli MA. Cooperative control of a human and a robot manipulator for positioning a cart on a frictionless plane. Mechatronics, 2006, 16(8): 461–469.
    [12] Tarn TJ, Bejczy AK, Yun X. Dynamic coordination of two robot arms. Proceedings of the 25th IEEE Conference on Decision and Control. Athens: IEEE, 1986. 1267–1270.
    [13] Liu CA, Wu KH, Xu V. Coordinated control of multiple free-floating space robotic system. Proceedings of 2005 IEEE International Conference Mechatronics and Automation. Niagara Falls: IEEE, 2005. 357–361.
    [14] Li ZJ, Ge SS, Wang ZP. Robust adaptive control of coordinated multiple mobile manipulators. Mechatronics, 2008, 18(5–6): 239–250.
    [15] Gardner JF, Velinsky SA. Kinematics of mobile manipulators and implications for design. Journal of Robotic Systems, 2000, 17(6): 309–320.
    [16] 吴军, 徐听, 连传强, 等. 协作多机器人系统研究进展综述. 智能系统学报, 2011, 6(1): 13–27.
    [17] 陈忠泽, 林良明, 颜国正. 基于MAS (Multi-Agent System)的多机器人系统: 协作多机器人学发展的一个重要方向. 机器人, 2001, 23(4): 368–373.
    [18] 石志国, 王志良, 刘冀伟. 异构多机器人协作系统研究进展. 智能系统学报, 2009, 4(5): 377–391.
    [19] 王森. 基于主被动柔顺的机器人轴孔精密装配技术研究[硕士学位论文]. 苏州: 苏州大学, 2020.
    [20] 郑养龙. 基于力传感器的双臂机器人轴孔柔顺装配策略与方法研究[硕士学位论文]. 广州: 华南理工大学, 2018.
    [21] 欧阳帆, 张铁, 陈杨. 用于机器人轴孔装配的主–被动结合柔顺装置. 华南理工大学学报(自然科学版), 2016, 44(7): 61–69.
    [22] 赵娜, 岳建锋, 李亮玉, 等. 双机器人主从协调焊接的路径规划算法. 焊接学报, 2015, 36(3): 67–70.
    [23] 张荣. 双机器人焊接协同作业轨迹规划[硕士学位论文]. 广西科技大学, 2019.
    [24] 李盼盼, 赵浩. 基于遗传算法的机器人焊接训练辅助系统研究. 山西大同大学学报(自然科学版), 2020, 36(5): 87–92.
    [25] 张磊, 王威. 双机器人协同搬运运动学分析及路径规划. 机械工程与自动化, 2020, (2): 89–91, 94.
    [26] 姚钢. 工业机器人搬运作业的轨迹规划研究. 南方农机, 2020, 51(23): 27–30.
    [27] 包翔宇, 曹皓清, 卫昌辰, 等. 协同搬运工业机器人系统运动学分析与工况仿真. 现代机械, 2020, (1): 1–4.
    [28] 李正义. 机器人与环境间力/位置控制技术研究与应用[博士学位论文]. 武汉: 华中科技大学, 2011.
    [29] von Albrichsfeld C, Tolle H. A self-adjusting active compliance controller for multiple robots handling an object. Control Engineering Practice, 2002, 10(2): 165–173.
    [30] Owen WS, Croft EA, Benhabib B. A multi-arm robotic system for optimal sculpting. Robotics and Computer-Integrated Manufacturing, 2008, 24(1): 92–104.
    [31] 张兴国, 张柏, 唐玉芝, 等. 多机器人系统协同作业策略研究及仿真实现. 机床与液压, 2017, 45(17): 44–51.
    [32] Zribi M, Karkoub M, Huang LL. Modelling and control of two robotic manipulators handling a constrained object. Applied Mathematical Modelling, 2000, 24(12): 881–898.
    [33] Liu JF, Abdel-Malek K. Robust control of planar dual-arm cooperative manipulators. Robotics and Computer-Integrated Manufacturing, 2000, 16(2–3): 109–119.
    [34] Wang J, Dodds SJ, Bailey WN. Co-ordinated control of multiple robotic manipulators handling a common object—Theory and experiments. IEE Proceedings-Control Theory and Applications, 1997, 144(1): 73–86.
    [35] 顾新兴, 叶桦, 冯纯伯, 等. 基于模型偏差补偿原理的机器人双臂协调控制. 控制理论与应用, 1993, 10(1): 21–28.
    [36] Huang HP, Chen RS. Modeling and adaptive coordination control of a two-robot system. Journal of Robotic Systems, 1992, 9(1): 65–92.
    [37] Derventzis CA, Davison EJ. Robust motion/force control of cooperative multi-arm systems. Proceedings of 1992 IEEE International Conference on Robotics and Automation. Nice: IEEE, 1992. 2230–2237.
    [38] Wen JT, Kreutz-Delgado K. Motion and force control of multiple robotic manipulators. Automatica, 1992, 28(4): 729–743.
    [39] 张广林, 胡小梅, 柴剑飞, 等. 路径规划算法及其应用综述. 现代机械, 2011, (5): 85–90.
    [40] Dijkstra EW. A note on two problems in connexion with graphs. Numerische Mathematik, 1959, 1(1): 269–271.
    [41] 李劲, 吕文阁, 侯梦华. 基于竞选算法的移动机器人路径规划. 机床与液压, 2009, 37(1): 30–31, 68.
    [42] Koenig S, Likhachev M, Furcy D. Lifelong planning A*. Artificial Intelligence, 2004, 155(1–2): 93–146.
    [43] 张汝波, 刘园园, 苏航, 等. 自主式水下机器人规划修复方法. 华中科技大学学报(自然科学版), 2013, 41(S1): 81–84.
    [44] Eberhart R, Kennedy J. A new optimizer using particle swarm theory. Proceedings of 6th Int Symposium on Micro Machine and Human Science. Nagoya, 1995. 39–43.
    [45] 段晋军. 多机器人协作焊接中的轨迹规划和位置力协调控制研究[博士学位论文]. 南京: 东南大学, 2019.
    [46] 潘建龙, 甘亚辉, 陈明, 等. 多机器人协作焊接系统初始焊接位置选取及最优轨迹规划. 第36届中国控制会议论文集. 大连: 中国自动化学会控制理论专业委员会, 2017. 7.
    [47] Nazarahari M, Khanmirza E, Doostie S. Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm. Expert Sytems with Applications, 2019, 115: 106–120.
    [48] Khatib O. Real-time obstacle avoidance for manipulators and mobile robots. Proceedings of 1985 IEEE International Conference on Robotics and Automation. St. Louis: IEEE, 1985. 500–505.
    [49] 张波涛, 刘士荣, 董德国. 基于栅格-几何混合地图的移动机器人分层路径规划. 华东理工大学学报(自然科学版), 2011, 37(5): 621–626.
    [50] 王维. 基于多智能体系统的多机器人路径规划方法研究及应用[硕士学位论文]. 成都: 电子科技大学, 2015.
    [51] Hassan AM, Elias CM, Shehata OM, et al. A global integrated artificial poential field/virtual obstacles path planning algorithm for multi-robot systemapplications. International Research Journal of Engineering and Technology, 2017, 4(9): 1198–1204.
    [52] 王丽. 移动机器人路径规划方法研究[硕士学位论文]. 西安: 西北工业大学, 2007.
    [53] 李尤. 多机器人路径规划算法研究[硕士学位论文]. 哈尔滨: 黑龙江大学, 2017.
    [54] 欧阳帆. 双机器人协调运动方法的研究[博士学位论文]. 广州: 华南理工大学, 2013.
    [55] Smith C, Karayiannidis Y, Nalpantidis L, et al. Dual arm manipulation—A survey. Robotics and Autonomous Systems, 2012, 60(10): 1340–1353.
    [56] Uchiyama M, Dauchez P. A symmetric hybrid position/force control scheme for the coordination of two robots. Proceedings of 1988 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 1988. 350–356.
    [57] Uchiyama M, Dauchez P. Symmetric kinematic formulation and non-master/slave coordinated control of two-arm robots. Advanced Robotics, 1992, 7(4): 361–383.
    [58] Ren Y, Chen ZS, Liu YC, et al. Adaptive hybrid position/force control of dual-arm cooperative manipulators with uncertain dynamics and closed-chain kinematics. Journal of the Franklin Institute, 2017, 354(17): 7767–7793.
    [59] Hogan N. Impedance control: An approach to manipulation: Part I—Theory. Journal of Dynamic Systems, Measurement, and Control. 1985, 107(1): 1–7.
    [60] Sun D, Mills JK. Adaptive synchronized control for coordination of multirobot assembly tasks. IEEE Transactions on Robotics and Automation, 2002, 18(4): 498–510.
    [61] Bonitz RG, Hsia TC. Force decomposition in cooperating manipulators using the theory of metric spaces and generalized inverses. Proceedings of the 1994 IEEE International Conference on Robotics and Automation. San Diego: IEEE, 1994. 1521–1527.
    [62] Caccavale F, Chiacchio P, Marino A, et al. Six-DOF impedance control of dual-arm cooperative manipulators. IEEE/ASME Transactions on Mechatronics, 2008, 13(5): 576–586.
    [63] 周扬. 双臂机器人的控制系统建立及阻抗控制研究[博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2014.
    [64] 贺军. 变负载双臂机器人阻抗自适应控制系统研究[博士学位论文]. 合肥: 中国科学技术大学, 2016.
    [65] 田献军. 多机器人体系结构与轨迹跟踪的研究[硕士学位论文]. 武汉: 武汉理工大学, 2009.
    [66] 丁楠. 多机械臂系统协调控制研究[硕士学位论文]. 上海: 上海交通大学, 2012.
    [67] 苏越. 双臂协作机器人协调操作与柔顺控制方法研究[硕士学位论文]. 武汉: 华中科技大学, 2018.
    [68] Perrusquía A, Yu W, Soria A. Position/force control of robot manipulators using reinforcement learning. Industrial Robot, 2019, 46(2): 267–280.
    [69] Gueaieb W, Karray F, Al-Sharhan S. A robust adaptive fuzzy position/force control scheme for cooperative manipulators. IEEE Transactions on Control Systems Technology, 2003, 11(4): 516–528.
    [70] Gueaieb W, Karray F, Al-Sharhan S. A robust hybrid intelligent position/force control scheme for cooperative manipulators. IEEE/ASME Transactions on Mechatronics, 2007, 12(2): 109–125.
    相似文献
    引证文献
引用本文

陈阳,郑甲红,王婧.双机器人协同控制研究综述.计算机系统应用,2022,31(2):13-21

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-04-13
  • 最后修改日期:2021-05-19
  • 在线发布日期: 2022-01-28
文章二维码
您是第11482545位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号