基于YOLOv3-spp的缺陷检测优化模型
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

南瑞集团有限公司科技项目(JS2001712)


Optimal Model for Defect Detection Based on YOLOv3-spp
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前基于传统的机器视觉分析方法筛选后的PCB焊接缺陷图像还需要进行人工的复检流程, 工作量大导致视觉疲劳后容易出错. 为了改善这种现状, 本文设计应用YOLOv3-spp的目标检测算法来构建焊接缺陷检测模型. 为提升检测速度, 采用模型剪枝、模型蒸馏、模型量化等技术对检测模型进行压缩优化, 采用深度学习加速组件OpenVINO来加载压缩优化后的检测模型, 实现对PCB焊接缺陷图像的复检. 基于该优化算法设计了一种基于深度学习技术的PCB焊接缺陷检测识别系统. 它能快速、准确地识别焊接缺陷并定位缺陷位置, 解决了人工目检带来的效率低下、漏检误检率高等问题.

    Abstract:

    At present, PCB welding defect images screened with traditional machine vision analysis methods still need manual reinspection, which is easy to make mistakes after visual fatigue due to heavy workload. In view of this, the study designs and applies the YOLOv3-spp object detection algorithm to build a welding defect detection model. For a higher detection speed, model pruning, model distillation, model quantization and other technologies are used to compress and optimize the detection model. OpenVINO, a deep learning acceleration component, is employed to load the compressed and optimized detection model for the reinspection of PCB welding defect images. With the help of this optimization algorithm, this study designs a PCB welding defect detection and identification system based on deep learning technology. It can quickly and accurately identify welding defects and locate the defects, addressing the low efficiency and high rates of missed detection and false detection caused by manual visual inspection.

    参考文献
    相似文献
    引证文献
引用本文

曾凯,李响,贾建梅,文继锋,王翔.基于YOLOv3-spp的缺陷检测优化模型.计算机系统应用,2022,31(2):213-219

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-04-11
  • 最后修改日期:2021-05-11
  • 录用日期:
  • 在线发布日期: 2022-01-28
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号