基于PSO-RBF神经网络的刀具寿命预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山西省回国留学人员基金(HGKY2019079)


Tool Life Prediction Based on PSO-RBF Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    有效的刀具寿命预测可以提高加工效率,保证工件加工精度,因此具有重要的研究价值.刀具寿命预测受到刀具材质、切削参数以及加工材料等多因素的影响,导致刀具寿命难以准确预测.针对这一问题提出了一种利用粒子群(particle swarm optimization,PSO)算法优化径向基(radial basis function,RBF)神经网络的刀具寿命预测方法.首先用PSO算法优化RBF神经网络的主要参数中心值c,宽度σ以及连接权值w,然后将影响刀具寿命的多个因素作为PSO-RBF神经网络模型的输入神经元,寿命作为输出神经元进行刀具寿命预测.论文提出的基于PSO-RBF神经网络的刀具寿命预测方法,经实验证明该算法平均相对误差为6.16%,与标准的RBF神经网络预测结果相比降低了17.14%,具有可行性.

    Abstract:

    Effective tool life prediction holds important research value in that it can improve the machining efficiency and ensure the machining accuracy of a workpiece. However, accurate tool life prediction is difficult to achieve as it is influenced by many factors such as tool material, cutting parameters, and machining material. So we propose a method of tool life prediction based on a radial basis function (RBF) neural network optimized by the particle swarm optimization (PSO) algorithm. Firstly, the main parameters of the RBF neural network, namely the center value c, width σ, and connection weight w, are optimized by the PSO algorithm. Then, tool life prediction is carried out, with the factors affecting tool life as input neurons of the PSO-RBF neural network model and tool life as the output neuron. The experimental results show that the proposed method of tool life prediction based on the PSO-RBF neural network is feasible, with an average relative error reduced by 17.14% from that of the standard RBF neural network to 6.16%.

    参考文献
    相似文献
    引证文献
引用本文

李建伟,刘成波,郭宏,吕娜.基于PSO-RBF神经网络的刀具寿命预测.计算机系统应用,2022,31(1):309-314

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-24
  • 最后修改日期:2021-04-21
  • 录用日期:
  • 在线发布日期: 2021-12-17
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号