摘要:针对目前安检场景中违禁品种类复杂、人工检查效率低易出错等问题, 文章提出一种名为Res152-YOLO的网络架构, 该架构基于YOLOv4 (You Only Look Once)优化目标检测网络. 为提高对X光图像中危险品的检测精度, Res152-YOLO采用ResNet-152网络代替原YOLOv4中的CSPDarknet-53网络, 将改进后的ResNet残差网络与YOLOv4网络连接. 实验中利用YOLOv4、Res152-YOLO等一系列网络在同一数据集上进行对比实验, 分别比较上述网络的损失曲线、对各类危险品的检测性能以及各网络的总体性能. 结果表明, Res152-YOLO网络在以上实验中性能优于原YOLOv4网络, 并且满足安检设备的帧率要求. 改进后的网络有效提高了安检的准确率, 能够消除一定的安全隐患.