优化YOLOv4算法的安检X光图像检测网络
作者:

X-Ray Security Image Detection Network Based on Optimized YOLOv4
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对目前安检场景中违禁品种类复杂、人工检查效率低易出错等问题, 文章提出一种名为Res152-YOLO的网络架构, 该架构基于YOLOv4 (You Only Look Once)优化目标检测网络. 为提高对X光图像中危险品的检测精度, Res152-YOLO采用ResNet-152网络代替原YOLOv4中的CSPDarknet-53网络, 将改进后的ResNet残差网络与YOLOv4网络连接. 实验中利用YOLOv4、Res152-YOLO等一系列网络在同一数据集上进行对比实验, 分别比较上述网络的损失曲线、对各类危险品的检测性能以及各网络的总体性能. 结果表明, Res152-YOLO网络在以上实验中性能优于原YOLOv4网络, 并且满足安检设备的帧率要求. 改进后的网络有效提高了安检的准确率, 能够消除一定的安全隐患.

    Abstract:

    Given the diverse prohibited varieties in current security inspection scenes and low-efficiency error-prone manual inspections, this study proposes network architecture, Res152-YOLO, based on the YOLOv4 optimized target detection network. Res152-YOLO uses the ResNet-152 network to replace the CSPDarknet-53 network in the original YOLOv4 and connects the improved ResNet to the YOLOv4 network to enhance the detection accuracy of dangerous goods in X-ray images. A series of networks such as YOLOv4 and Res152-YOLO are used to conduct comparative experiments on the same data set to compare the loss curves of the above-mentioned networks, the detection results for various dangerous goods, and the overall performance of each network. The results show that the improved network can improve the accuracy of security detection and eliminate potential safety hazards.

    参考文献
    [1] Mery D. Automated detection in complex objects using a tracking algorithm in multiple X-ray views. CVPR 2011 Workshops. Colorado Springs: IEEE, 2011. 41–48.
    [2] Cover T, Hart P. Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 1967, 13(1): 21–27. [doi: 10.1109/TIT.1967.1053964
    [3] Mery D, Mondragon G, Riffo V, et al. Detection of regular objects in baggage using multiple X-ray views. Insight-Non-Destructive Testing and Condition Monitoring, 2013, 55(1): 16–20. [doi: 10.1784/insi.2012.55.1.16
    [4] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014. 580–587.
    [5] He KM, Zhang XY, Ren SQ, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. [doi: 10.1109/TPAMI.2015.2389824
    [6] Girshick R. Fast R-CNN. Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015. 1440–1448.
    [7] Ren SQ, He KM, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. [doi: 10.1109/TPAMI.2016.2577031
    [8] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 770–778.
    [9] Bochkovskiy A, Wang CY, Liao HYM. YOLOv4: Opstimal speed and accuracy of object detection. arXiv: 2004.10934, 2020.
    [10] 蒋镕圻, 彭月平, 谢文宣, 等. 嵌入scSE模块的改进YOLOv4小目标检测算法. 图学学报, 2021, 42(4): 546–555
    [11] Mery D, Riffo V, Zscherpel U, et al. GDXray: The database of X-ray images for nondestructive testing. Journal of Nondestructive Evaluation, 2015, 34(4): 42. [doi: 10.1007/s10921-015-0315-7
    [12] Miao CJ, Xie LX, Wan F, et al. SIXray: A large-scale security inspection X-ray benchmark for prohibited item discovery in overlapping images. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 2119–2128.
    [13] 张友康, 苏志刚, 张海刚, 等. X光安检图像多尺度违禁品检测. 信号处理, 2020, 36(7): 1096–1106
    [14] 徐子睿, 刘猛, 谈雅婷. 基于YOLOv4的车辆检测与流量统计研究. 现代信息科技, 2020, 4(15): 98–100, 103
    [15] 徐晨玉. 基于YOLOv3的危险物品检测模型研究与改进[硕士学位论文]. 兰州: 兰州大学, 2019.
    [16] Zhou JY, Zhao YM. Application of convolution neural network in image classification and object detection. Computer Engineering and Applications, 2017, 53(13): 34–41
    [17] 李彦冬, 郝宗波, 雷航. 卷积神经网络研究综述. 计算机应用, 2016, 36(9): 2508–2515, 2565. [doi: 10.11772/j.issn.1001-9081.2016.09.2508
    [18] 张慧, 王坤峰, 王飞跃. 深度学习在目标视觉检测中的应用进展与展望. 自动化学报, 2017, 43(8): 1289–1305
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨嘉诚,黄佳慧,韩永麟,王萍,李晓辉.优化YOLOv4算法的安检X光图像检测网络.计算机系统应用,2021,30(12):116-122

复制
分享
文章指标
  • 点击次数:992
  • 下载次数: 1865
  • HTML阅读次数: 3010
  • 引用次数: 0
历史
  • 收稿日期:2021-03-09
  • 最后修改日期:2021-03-31
  • 在线发布日期: 2021-12-10
文章二维码
您是第11349293位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号