基于蚁群-遗传融合框架的仓储群机器人任务分配
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山西省软科学项目(2019041010-2); 山西省高校教学改革创新项目(J2019133); 山西省哲社科学规划课题(2020YJ121); 广东省普通高校特色创新项目(2018GKTSCX057); 广东省普通高校重点科研平台和项目(2020KCXTD067)


Task Allocation of Warehouse Swarm Robots Based on Ant Colony-Genetic Fusion Framework
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    将智能仓储中的自主移动群机器人订单任务分配, 建模成群机器人协同调度的多目标优化问题, 将成员机器人完成拣货任务的路径代价和时间代价作为优化目标. 设计了蚁群-遗传算法融合框架并在其中求解. 该框架中, 蚁群算法作为副算法, 用于初始种群优化; 遗传算法改进后作为主算法. 具体地, 在遗传算法轮盘赌选择算子后引入精英保留策略, 并在遗传操作中加入逆转算子. 针对不同数量的订单任务, 使用不同规模的群机器人系统进行了任务分配仿真实验. 结果表明, 在本文所提的融合框架中求解, 较分别使用蚁群算法或遗传算法单独求解, 性能上具有明显优势, 能够发挥蚁群算法鲁棒性好和遗传算法全局搜索能力强的特点, 提高智能仓储系统的整体运行效率.

    Abstract:

    The order task allocation of autonomous mobile swarm robots in intelligent warehousing is modeled as a multi-objective optimization problem of cooperative swarm robotic scheduling, in which the path and time cost of member robots completing the picking task is viewed as the optimization objective. An ant colony-genetic algorithm fusion framework is designed. In this framework, the ant colony algorithm is taken as the secondary algorithm for initial population optimization, while the improved genetic algorithm as the main. To be specific, an elite reservation strategy is adopted after the roulette wheel selection operator in the genetic algorithm, and the inversion operator is added. A series of task allocation experiments are performed under conditions of different numbers of tasks and swarm sizes. The simulation results show that the proposed algorithm dominates over the ant colony algorithm and the genetic algorithm in performance. It combines the robustness of the ant colony algorithm and the global search ability of the genetic algorithm, improving the overall operation efficiency of the intelligent warehousing system.

    参考文献
    相似文献
    引证文献
引用本文

梁金琳,薛颂东,赵静,潘理虎.基于蚁群-遗传融合框架的仓储群机器人任务分配.计算机系统应用,2021,30(11):172-178

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-01-23
  • 最后修改日期:2021-02-23
  • 录用日期:
  • 在线发布日期: 2021-10-22
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号