摘要:传统的KNN算法存在分类效率低等缺点. 针对这些缺点, 本文提出一种高效的结合多代表点思想的加权KNN算法, 利用变精度粗糙集上下近似区域的概念, 结合聚类算法生成代表点集合构造分类模型, 再运用结构风险最小化理论优化分类模型并对影响分类模型的因素进行分析. 分类过程中根据测试样本与各代表点的相似度, 得到测试样本的相对位置. 其中属于样本点下近似区域的测试样本可直接判断其类别. 若测试样本在其他区域, 则根据测试样本与各代表点的相对位置对各代表点覆盖范围内的样本进行加权后判断测试样本的类别. 在文本分类领域的数据集上进行实验, 结果表明该算法能有效的提高分类模型的性能.