摘要:在以用户为中心的超密集网络(User-centric Ultra-Dense Networking, UUDN)中, 由于进行信道估计的导频序列长度有限, 导致传统的基于信息论准则的窃听检测技术效果不理想甚至完全失效. 针对这种情况, 提出了一种基于LS-FDC准则的多节点联合检测算法. 首先, 该方法利用统计学中的线性收缩(Linear Shrinkage, LS)理论, 对各节点接收到的样本协方差矩阵进行收缩优化, 使其特征分解后更好的拟合总体特征值的分布情况; 然后, 接入节点组(Access Points Group, APG)中的各节点利用灵活检测准则(Flexible Detection Criterion, FDC)算法进行联合判定是否存在窃听用户; 最后, 仿真实验与理论分析表明: 相较于其他的信源估计检测算法, 该算法在较低信噪比和导频序列长度有限时的检测概率显著提高, 甚至在导频序列长度小于节点天线数的情况下都能达到很好的检测效果.