基于卷积神经网络的标识牌识别技术
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山东省重大科技创新工程(2018YFJH0306)


Logo Recognition Technology Based on Convolutional Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前而言, 我国标识识别技术正处于飞速发展阶段, 具体体现在处理精度、再现性、灵活性、适用面、信息压缩等方面, 但是, 在实际发展过程中, 该技术的发展还是受到了实际需求的限制. 深度学习模型运算量大, 难以在轻量级嵌入式设备上运行, 工业生产中噪声种类繁多复杂, 影响识别准确性. 针对上述问题, 本文提出一种基于卷积神经网络的标识识别技术, 利用改进的Canny边缘检测算法, 来增强对边缘信息提取时的鲁棒性, 实现在高噪声环境下对标识牌精准提取. 另外为了进一步提高识别准确率, 本文利用CNN和椭圆拟合相结合的思路, 把模型识别结果和椭圆拟合结果相结合来判别识别的准确性, 在增加少量运算量的同时提高识别准确率.

    Abstract:

    At present, the logo recognition technology in China is being rapidly developed, which is embodied in processing accuracy, reproducibility, flexibility, applicability, and information compression. However, the development of this technology is still limited by actual demands. The deep learning model has heavy computation and is difficult to run on lightweight embedded devices. There are many and complex noises in industrial production, which affect the recognition accuracy. To solve the above problems, this study proposes a logo recognition technology based on the convolutional neural network. An improved Canny edge detection algorithm is used to enhance the robustness in edge information extraction, and signs are accurately extracted in a high-noise environment. In addition, to further improve the recognition accuracy, in the combination of Convolutional Neural Network (CNN) and ellipse fitting, this study combines the model recognition and ellipse fitting results to determine the recognition accuracy. This method improves the recognition accuracy while increasing a small amount of calculation.

    参考文献
    相似文献
    引证文献
引用本文

董正通,王涛,赵侦钧,耿子贺.基于卷积神经网络的标识牌识别技术.计算机系统应用,2021,30(10):156-163

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-23
  • 最后修改日期:2021-01-25
  • 录用日期:
  • 在线发布日期: 2021-10-08
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号