摘要:在大数据的时代背景下, 我国电力事业信息化的发展日趋重要, 尤其是需要使用计算机技术对用电数据进行分析. 对于用户用电异常的分析问题, 传统方法既耗时又耗力, 这就需要引入机器学习的相关方法自动的识别异常信息. 现阶段, 用电异常分析主要基于传统的异常检测算法或深度神经网络, 传统异常检测算法运行精度不足而深度神经网络计算速度又过慢. 针对目前存在的不足, 本分采用了基于采样技术和LightGBM的用户用电异常检测模型, 把用电异常检测问题看作分类问题, 并使用当前流行的分类模型LightGBM进行训练, 在保证速度快的前提下提高了检测的准确率.