摘要:推荐系统中的辅助信息可以为推荐提供有用的帮助, 而传统的协同过滤算法在计算用户相似度时对辅助信息的利用率低, 数据稀疏性大, 导致推荐的精度偏低. 针对这一问题, 本文提出了一种融合用户偏好和多交互网络的协同过滤算法(NIAP-CF). 该算法首先根据评分矩阵和项目属性特征矩阵挖掘出用户的项目属性偏好信息, 然后使用SBM方法计算用户间的项目属性偏好相似度, 并用其改进用户相似度计算公式. 在进行评分预测时, 构建融合用户-项目属性偏好信息的多交互神经网络预测模型, 使用动态权衡参数综合由用户相似度计算出的预测评分和模型的预测评分来进行项目推荐. 本文使用MovieLens数据集进行实验验证, 实验结果表明改进算法能够提高推荐的精度, 降低评分预测的MAE和RMSE值.