融合用户偏好和多交互网络的协同过滤算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Collaborative Filtering Algorithm Combining User Preferences and Multi-Interaction Networks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    推荐系统中的辅助信息可以为推荐提供有用的帮助, 而传统的协同过滤算法在计算用户相似度时对辅助信息的利用率低, 数据稀疏性大, 导致推荐的精度偏低. 针对这一问题, 本文提出了一种融合用户偏好和多交互网络的协同过滤算法(NIAP-CF). 该算法首先根据评分矩阵和项目属性特征矩阵挖掘出用户的项目属性偏好信息, 然后使用SBM方法计算用户间的项目属性偏好相似度, 并用其改进用户相似度计算公式. 在进行评分预测时, 构建融合用户-项目属性偏好信息的多交互神经网络预测模型, 使用动态权衡参数综合由用户相似度计算出的预测评分和模型的预测评分来进行项目推荐. 本文使用MovieLens数据集进行实验验证, 实验结果表明改进算法能够提高推荐的精度, 降低评分预测的MAERMSE值.

    Abstract:

    The auxiliary information in recommendation systems can provide real help for recommendation, while the traditional collaborative filtering algorithm has a low utilization rate of the auxiliary information and high data sparsity in the calculation of user similarity, which leads to low recommendation accuracy. In response to this problem, this study proposes an improved collaborative filtering algorithm that integrates user preferences and multi-interactive neural networks (NIAP-CF). Firstly, the information about the item attribute preferences of users is collected according to the rating matrix and the item attribute feature matrix. Then, the SBM method is used to calculate the similarity of item attribute preferences between users to improve the calculation formula for user similarity. In the process of score prediction, we build a multi-interactive neural network prediction model integrating user and item attribute preference. Dynamic trade-off parameters are introduced to integrate the predicted scores calculated by user similarity and by the model. Experimental verification based on the MovieLens data set shows that the improved algorithm can improve the recommendation accuracy and reduce the MAE and RMSE of score prediction.

    参考文献
    相似文献
    引证文献
引用本文

刘锦涛,谢颖华.融合用户偏好和多交互网络的协同过滤算法.计算机系统应用,2021,30(9):179-185

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-15
  • 最后修改日期:2021-01-11
  • 录用日期:
  • 在线发布日期: 2021-09-04
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号