基于振动相位信号分解的非接触式心率检测
作者:
基金项目:

安徽省科技专项(201903c08020010)


Non-Contact Heart Rate Detection Based on Decomposition of Vibration Phase Signals
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    心率是反映人体心血管系统状态的重要依据. 基于视频的非接触式心率检测凭借其场景适应能力强、成本低等优势, 得到了广泛应用. 然而, 这种检测方法容易受到光照变化、目标运动等噪声干扰. 针对该问题, 本文提出了一种基于振动相位信号分解的腕部表皮视频心率提取方法, 其核心思想是设计方向选择的复可控金字塔搜索出脉搏信号的带通范围, 使用信噪比进行脉搏信号的感兴趣选择, 使用鲁棒主成分分析从混合信号中分离出脉搏信号, 从而最终实现脉搏信号抗噪的心率检测. 本文自行采集了心率检测数据集, 并使用脉搏检测仪作为真值进行方法验证. 在干扰场景下准确率为97.80%, 与3种主流方法对比准确率提升均大于5%.

    Abstract:

    Heart rate is an important basis for reflecting the status of the cardiovascular system in humans. Video-based non-contact heart rate detection has been widely applied due to its advantages of strong scene adaptability and low cost. However, this method is susceptible to noise interference such as illumination change and target movement. To solve this problem, this study proposes a method based on the decomposition of vibration phase signals to extract the video heart rate on the wrist skin. Its core idea is to find the band range of pulse signals by designing a direction-selective complex steerable pyramid. The signal-to-noise ratio is used to select the pulse signals of interest and the robust principal component analysis is employed to isolate pulse signals from the mixed signals. Finally, the heart rate of noise-resistant pulse signals is detected. In this study, the data set of heart rate detection is collected, and the output from a pulse detector is taken as the true values to verify the method. The accuracy is 97.80% in the interference scene, which is over 5% higher than that of the three mainstream methods.

    参考文献
    [1] Hartley CJ, Reddy AK, Entman ML, et al. Noninvasive assessment of vascular mechanics in mice. Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society [Engineering in Medicine and Biology]. Houston: IEEE, 2002. 1236–1237.
    [2] Liu XN, Yang XZ, Jin J, et al. Self-adaptive signal separation for non-contact heart rate estimation from facial video in realistic environments. Physiological Measurement, 2018, 39(6): 06NT01. [doi: 10.1088/1361-6579/aaca83
    [3] 罗志昌, 张松, 杨文鸣, 等. 脉搏波波形特征信息的研究. 北京工业大学学报, 1996, 22(1): 71–79
    [4] Poh MZ, McDuff DJ, Picard RW. Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Optics Express, 2010, 18(10): 10762–10774. [doi: 10.1364/OE.18.010762
    [5] Delorme A, Makeig S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 2004, 134(1): 9–12. [doi: 10.1016/j.jneumeth.2003.10.009
    [6] Wu HY, Rubinstein M, Shih E, et al. Eulerian video magnification for revealing subtle changes in the world. ACM Transactions on Graphics, 2012, 31(4): 65
    [7] Miljković N, Trifunović D. Pulse rate assessment: Eulerian video magnification vs. electrocardiography recordings. 2014 12th Symposium on Neural Network Applications in Electrical Engineering (NEUREL). Belgrade: IEEE, 2014. 17–20.
    [8] 戚刚, 杨学志, 吴秀, 等. 非合作面部晃动情况下的心率检测. 中国图象图形学报, 2017, 22(1): 126–136. [doi: 10.11834/jig.20170114
    [9] 李晓媛, 武鹏, 刘允, 等. 基于人脸视频的心率参数提取. 光学精密工程, 2020, 28(3): 548–557
    [10] 苏培权, 许亮, 梁永坚. 基于欧拉影像放大的非接触式心率测量方法. 计算机应用, 2018, 38(3): 916–922. [doi: 10.11772/j.issn.1001-9081.2017071808
    [11] 李江山. 基于视频放大的脉搏波提取方法研究[硕士学位论文]. 合肥: 合肥工业大学, 2019.
    [12] Wadhwa N, Rubinstein M, Durand F, et al. Phase-based video motion processing. ACM Transactions on Graphics, 2013, 32(4): 1–10
    [13] Portilla J, Simoncelli EP. A parametric texture model based on joint statistics of complex wavelet coefficients. International Journal of Computer Vision, 2000, 40(1): 49–70. [doi: 10.1023/A:1026553619983
    [14] 赵晓宇, 李艳萍, 付颜龙, 等. 几种时频分析方法的研究和对比. 信息通信, 2019, (8): 99–100
    [15] 史加荣, 郑秀云, 魏宗田, 等. 低秩矩阵恢复算法综述. 计算机应用研究, 2013, 30(6): 1601–1605. [doi: 10.3969/j.issn.1001-3695.2013.06.001
    [16] Mostafaiy B, Faridrohani MR, Chenouri S. Optimal estimation in functional linear regression for sparse noise-contaminated data. Canadian Journal of Statistics, 2019, 47(4): 524–559. [doi: 10.1002/cjs.11511
    [17] 陈健, 段田东, 徐文艳, 等. 基于谱再生逆分析的信号细微特征提取. 信号处理, 2016, 32(3): 349–354
    [18] 徐菁, 朱敏. 基于三轴加速度信号的心率修正算法. 计算机应用与软件, 2017, 34(12): 289–294. [doi: 10.3969/j.issn.1000-386x.2017.12.055
    [19] 周双, 杨学志, 金兢, 等. 采用自适应信号恢复算法的非接触式心率检测. 中国图象图形学报, 2019, 24(10): 1670–1682. [doi: 10.11834/jig.190013
    [20] 王伟江, 彭业萍, 曹广忠, 等. 面向机柜表面缺陷检测的不均匀光照和低亮度图像增强方法. 仪器仪表学报, 2019, 40(8): 131–139
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

宋正伟,陈鲸,杨学志,吴克伟,方帅.基于振动相位信号分解的非接触式心率检测.计算机系统应用,2021,30(10):171-179

复制
分享
文章指标
  • 点击次数:862
  • 下载次数: 1762
  • HTML阅读次数: 1583
  • 引用次数: 0
历史
  • 收稿日期:2021-01-11
  • 最后修改日期:2021-02-07
  • 在线发布日期: 2021-10-08
文章二维码
您是第11304776位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号