面向光学遥感图像典型目标检测的SSD模型优化
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(2018YFB050540);中国科学院战略性先导科技专项(A类)(XDA17040303)


SSD Model Optimization for Typical Object Detection in Optical Remote Sensing Images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文面向光学遥感图像目标检测应用, 针对光学遥感图像中的典型目标—飞机和汽车, 提出一种改进的SSD模型: 首先在SSD (Single Shot multibox Detector)网络模型基础上引入多尺度特征融合模块, 实现深层特征与浅层特征的融合以获得更多的特征上下文信息, 增强网络对目标特征的提取能力; 其次根据数据集目标样本尺寸分布特征进行聚类分析获得更准确的默认目标框参数, 从而有效提升网络对目标位置信息的提取能力. 将本文模型与SSD及YOLOv3模型在常用遥感图像目标检测数据集上进行对比, 目标检测精度均有较大提升, 验证了该模型的有效性.

    Abstract:

    Oriented to object detection in optical remote sensing images, this study proposes an improved Single Shot multibox Detector (SSD) model aiming at typical objects, i.e., aircraft and car, in the images. First, a multi-scale feature fusion module is introduced to the SSD network model to fuse deep features and shallow features. As a result, more contextual information of features can be obtained and the network’s ability to extract object features is enhanced. Then, cluster analysis is performed according to the size distribution characteristics of target samples in the data set to obtain more accurate default bounding box parameters, thereby effectively improving the network’s ability to extract target location information. Finally, the proposed model is compared with SSD and YOLOv3 models on data sets common for object detection in remote sensing images, which demonstrates that the mean Average Precision (mAP) of object detection has been greatly improved and verifies the effectiveness of our model.

    参考文献
    相似文献
    引证文献
引用本文

薛俊达,朱家佳,李晓辉,张静,窦帅,米琳,李子扬,苑馨方,李传荣.面向光学遥感图像典型目标检测的SSD模型优化.计算机系统应用,2021,30(10):301-306

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-31
  • 最后修改日期:2021-01-29
  • 录用日期:
  • 在线发布日期: 2021-10-08
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号