向量复杂网络及其在复杂系统建模中的应用
作者:
基金项目:

国家自然科学基金(61502039); 2019年促进高校内涵发展科技创新服务能力建设项目(5112011019); 北京信息科技大学2019年度科技计划一般项目(KM201911232002)


Vector Complex Network and Its Application in Complex System Modeling
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本文在传统的复杂网络建模基础上提出了一种基于向量复杂网络的建模方法, 该方法能够针对节点的异质性对复杂的系统进行整体化建模. 基于业务特性, 通过分层建模的思想对不同业务导向的网络进行建模, 采用基于业务驱动的复杂系统建模算法, 将不同网络模型进行组网. 进而研究具有多种类型的复杂系统的建模. 最后, 以智能电网为例验证了该方法的有效性.

    Abstract:

    This study proposes a vector-based complex network modeling method on the basis of the relevant traditional method, which can model the entire complex system according to the heterogeneity of nodes. Depending on business characteristics, different business networks are modeled by virtue of the idea of hierarchical modeling, and business-driven complex system modeling algorithms are used for the networking of different networks. The network splitting algorithm is used for partial splitting of complex systems to analyze local performance. The proposed method not only reduces the complexity of modeling but also enriches the expressive ability of the model, which is of great significance to the analysis of complex systems. Finally, a smart grid is taken as an example to verify the effectiveness of the method.

    参考文献
    [1] 宋学锋. 复杂性、复杂系统与复杂性科学. 中国科学基金, 2003, 17(5): 262–269. [doi: 10.3969/j.issn.1000-8217.2003.05.002
    [2] 钱学森, 于景元, 戴汝为. 一个科学新领域——开放的复杂巨系统及其方法论. 自然杂志, 1990, 13(1): 3–10, 64
    [3] Bertalanffy LV. General system theory. New York: Braziller, 1968.
    [4] Prigogine I, Stengers I. Order Out of Chaos. New York: Bantam Books, 1984.
    [5] Haken H. Advanced Synergetics. New York: Springer, 1983.
    [6] Sastry S. Networked embedded systems: From sensor webs to cyber-physical systems. Proceedings of the 10th International Workshop on Hybrid Systems: Computation and Control. Pisa, Italy. 2007. 1.
    [7] 刘晓平, 唐益明, 郑利平. 复杂系统与复杂系统仿真研究综述. 系统仿真学报, 2008, 20(23): 6303–6315
    [8] 胡晓峰. 战争复杂性与信息化战争模拟. 系统仿真学报, 2006, 18(12): 3572–3580. [doi: 10.3969/j.issn.1004-731X.2006.12.063
    [9] 张嗣瀛. 复杂性科学, 整体规律与定性研究. 复杂系统与复杂性科学, 2005, 2(1): 71–83. [doi: 10.3969/j.issn.1672-3813.2005.01.012
    [10] 王正中. 基于演化的复杂系统建模与仿真研究. 系统仿真学报, 2003, 15(7): 905–909. [doi: 10.3969/j.issn.1004-731X.2003.07.001
    [11] Kurant M, Thiran P. Layered complex networks. arXiv: physics/0510194, 2005.
    [12] 苏春旺. 复杂系统中的结构与动力学——基于数据的研究[博士学位论文]. 兰州: 兰州大学, 2020.
    [13] Buldyrev SV, Parshani R, Paul G, et al. Catastrophic cascade of failures in interdependent networks. Nature, 2010, 464(7291): 1025–1028. [doi: 10.1038/nature08932
    [14] Parshani R, Buldyrev SV, Havlin S. Interdependent networks: Reducing the coupling strength leads to a change from a first to second order percolation transition. Physical Review Letters, 2010, 105(4): 048701. [doi: 10.1103/PhysRevLett.105.048701
    [15] Shao J, Buldyrev SV, Havlin S, et al. Cascade of failures in coupled network systems with multiple support-dependence relations. Physical Review E, 2011, 83(3 Pt 2): 036116
    [16] 隋毅, 邵峰晶, 孙仁诚, 等. 基于向量空间的多子网复合复杂网络模型动态组网运算的形式描述. 软件学报, 2015, 26(8): 2007–2019. [doi: 10.13328/j.cnki.jos.004697
    [17] Chen B, Cao L. An optimized algorithm for calculating the average path length of complex network. Proceedings of the 2017 10th International Symposium on Computational Intelligence and Design. Hangzhou, China. 2017. 334–337.
    [18] Fan LY, Li CF, Zhang LF, et al. Assessing the importance of nodes in the social network based on clustering coefficient. Proceedings of the 2018 IEEE/ACIS 17th International Conference on Computer and Information Science. Singapore. 2018. 229–233.
    [19] Kartun-Giles AP, Bianconi G. Beyond the clustering coefficient: A topological analysis of node neighbourhoods in complex networks. Chaos, Solitons & Fractals: X, 2019, 1: 100004
    [20] Pastor-Satorras R, Rubi M, Diaz-Guilera A. Statistical Mechanics of Complex Networks. Berlin: Springer, 2003.
    [21] 汪小帆, 李翔, 陈关荣. 复杂网络理论及其应用. 北京: 清华大学出版社, 2006.
    [22] Holland PW, Leinhardt S. Transitivity in structural models of small groups. Leinhardt S. Social Networks. Amsterdam: Academic Press, 1977. 49–66.
    [23] Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature, 1998, 393(6684): 440–442. [doi: 10.1038/30918
    [24] Barabasi AL, Albert R. Emergence of scaling in random networks. Science, 1999, 286(5439): 509–512. [doi: 10.1126/science.286.5439.509
    [25] 周涛, 柏文洁, 汪秉宏, 等. 复杂网络研究概述. 物理, 2005, 34(1): 31–36. [doi: 10.3321/j.issn:0379-4148.2005.01.007
    [26] Kenett DY, Gao JX, Huang XQ, et al. Network of interdependent networks: Overview of theory and applications. In: D’Agostino G, Scala A, eds. Networks of Networks: The Last Frontier of Complexity. Cham: Springer, 2014. 3–36.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

任晓玲,孟坤.向量复杂网络及其在复杂系统建模中的应用.计算机系统应用,2021,30(9):309-316

复制
分享
文章指标
  • 点击次数:776
  • 下载次数: 1929
  • HTML阅读次数: 1214
  • 引用次数: 0
历史
  • 收稿日期:2020-12-21
  • 最后修改日期:2021-01-25
  • 在线发布日期: 2021-09-04
文章二维码
您是第11418234位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号