结合用户主观偏好与项目属性扩充的推荐算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(62002156); 江苏省高等学校自然科学研究面上项目(19KJB520035); 江苏省研究生科研与实践创新计划(KYCX20_1327)


Recommendation Algorithm Combined with User Preference and Item Attribute Extension
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    协同过滤算法是推荐系统中使用广泛的一种算法, 然而传统协同过滤算法仅利用评分信息, 实际场景下会面临相似度计算准确率低, 推荐个性化程度不高的缺陷, 难以满足用户的需求. 针对协同过滤算法的不足, 结合用户主观偏好与项目属性扩充提出一种改进算法, 首先在项目相似度计算上做了两个改进: 引入标签相关度, 依据项目标签相关度来研究项目之间的相似度, 并根据项目历史评分用户的特征构造项目的扩充属性, 可用于从项目受众类型的角度衡量项目相似度; 其次考虑到用户存在主观偏好的情况, 使用支持向量机为每个用户训练标签偏好预测模型, 可用于项目预测评分的修正, 提高推荐的个性化程度和准确度. 基于MovieLens数据集的实验结果表明, 所提算法能更准确地计算项目间的相似度, 且能根据用户的个性化偏好得出更精确的预测评分.

    Abstract:

    Collaborative filtering algorithms are widely used in recommendationsystems. However, traditional collaborative filtering algorithms, which only use scoring information, have the defects of inaccurate similarity calculation and low personalization in actual scenarios and thus fail to meet user needs. For this reason, this study proposes an improved algorithm combined with user preferences and item attribute extension. Firstly, two improvements are made in the calculation of item similarity: Tag correlation is introduced to study the similarity between items; the extended attribute of items constructed according to the characteristics of the users who scored the item scan measure the item similarity in terms of item audience type. Secondly, considering the subjective preferences of users, a support vector machine is adopted to train the preference prediction model for each user, which can help to modify the item prediction score and improve the personalization and accuracy. Experimental results based on MovieLens dataset show that the proposed algorithm can calculate the similarity more accurately between items and get more accurate prediction scores according to users’ personalized preferences.

    参考文献
    相似文献
    引证文献
引用本文

钟耀亿,丁晓剑,杨帆.结合用户主观偏好与项目属性扩充的推荐算法.计算机系统应用,2021,30(9):192-199

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-15
  • 最后修改日期:2021-01-18
  • 录用日期:
  • 在线发布日期: 2021-09-04
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号