摘要:通过嵌入式设备在边缘端进行行人检测能满足实时、安全与隐私保护等方面的基本需求. 由于原CenterNet检测网络模型backbone通常以DLA、Hourglass等复杂度较高的多层特征融合结构, 嵌入式设备的计算能力有限难以满足实时的要求, 因此基于BiFPN网络结构和加权特征融合方法, 通过对backbone中的不同特征层进行加权融合, 改进了原来的backbone方法, 在保证检测精度的同时提升了检测速度. 同时针对行人这一特定的检测类别, 通过修改训练期间HeatMap上高斯核分布, 增加对行人检测的适应性, 进一步减少了因行人之间相互遮挡而漏检造成的精度降低. 在Jetson TX2上的实验结果表明, 改进后的行人检测AP为0.774, 同时单张图像的推理时间为68 ms, 能够满足在嵌入式设备上的实时要求.