摘要:由于手持拍摄设备抖动或目标运动等原因, 使得视频图像资料产生运动模糊问题, 降低了人类的感知质量. 针对该问题从原来如何处理得到清晰图像, 到现在如何高效快捷的获得清晰图像, 提出了一种基于轻量级GAN(Generative Adversarial Network) 的实时视频图像去模糊新模型. 该模型通过定义PatchGAN作为判别网络, 并在其基础上设置了全局图像和局部特征的双尺度判别器; 生成网络以轻量级MobileNetV3为主干网并引入特征金字塔进行特征提取, 以解决判别网络中特征信息利用率低以及生成网络推理效率慢的问题. 该模型采用端到端的方式对视频图像进行快速高效去模糊. 经过在GoPro和Kohler数据集上进行实验, 结果表明该模型去模糊后的锐利图像具有较高的峰值信噪比和结构相似度, 同时比其他模型的推理速度提高了1.7–127倍.