摘要:精准的负荷预测是电力工作者重要的工作之一, 而负荷预测以预测周期的不同, 一般可以划分为短期电力负荷预测与中长期电力负荷预测. 其中中长期电力负荷预测相较短期电力负荷预测而言, 该领域缺乏大量前沿工作者的探索. 因此本文提出一种可应用于中期电力负荷预测领域且基于XGBoost-DNN的算法. 该算法将树模型和深度神经网络相结合, 并将短期电力负荷预测引入到了中期电力负荷预测的工作中, 基于树模型自身特点, 将数据特征加工成高阶的交叉特征, 同时结合原有数据利用深度神经网络可学习到丰富的特征信息. 这里是以2017全球能源预测竞赛的数据进行算法分析, 其中实验表明, 在中期电力负荷预测领域, 该方法提出的XGBoost-DNN模型相较于DNN, LSTM而言, 其具备更加精准的准确性.