基于敏感参数发现的区域重点污染物浓度预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Regional Key Pollutant Concentration Prediction Based on Sensitive Parameter Discovery
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    污染物浓度变化趋势对于环境监测工作意义重大. 现今各种前馈神经网络预测模型的输出结果仅与当前输入有关, 无法研究污染物数据前后依赖关系. 且多种污染物具有相同排放源, 污染物间往往存在潜在关联关系, 一种污染物的变化可能反映另一种污染物变化, 所以在预测中需考虑其他敏感参数的影响. 针对上述两个问题, 提出一种基于敏感参数发现的区域重点污染物浓度预测方法. 应用关联规则算法及多元回归分析挖掘出各污染物的敏感参数, 构建多变量LSTM预测模型, 将待预测污染物及其敏感参数作为预测模型特征变量, 进行污染物的浓度预测. 实验结果表明本文方法可有效预测污染物浓度变化趋势, 预测效果优于未经关系发现的LSTM模型.

    Abstract:

    The variation trend in pollutant concentration is of great significance for environmental monitoring. At present, the output of various feedforward neural network prediction models is only related to the current input, so it is impossible to study the dependence of pollutant data before and after. Multiple pollutants have the same emission source, and there is a potential correlation between pollutants. The change in one pollutant may reflect that in another pollutant, so the influence of other sensitive parameters should be considered in the prediction. To solve the above two problems, this study proposes a regional key pollutant concentration prediction method based on sensitive parameter discovery. The association rule algorithm and multiple regression analysis are used to mine the sensitive parameters of each pollutant, and a multivariable LSTM prediction model is constructed. The pollutants to be predicted and their sensitive parameters are taken as the characteristic variables of the model to predict the pollutant concentration. The experimental results show that the proposed method can reliably predict the variation trend in pollutant concentration and it performs better than the LSTM model without relation discovery.

    参考文献
    相似文献
    引证文献
引用本文

潘欣玉,郑亮.基于敏感参数发现的区域重点污染物浓度预测.计算机系统应用,2021,30(10):202-209

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-26
  • 最后修改日期:2021-01-25
  • 录用日期:
  • 在线发布日期: 2021-10-08
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号