基于全卷积网络的图像语义分割方法综述
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省普通高校“人工智能”重点领域专项(2019KZDZX1027); 中国高等教育学会专项课题(2020JXD01); 广东高校省级重点平台和重大科研项目(2017KTSCX048); 广东省中医药局科研项目(20191411)


Review on Image Semantic Segmentation Based on Fully Convolutional Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 增强出版
  • |
  • 文章评论
    摘要:

    自全卷积网络(Fully Convolutional Network, FCN)提出以后, 应用深度学习技术在图像语义分割领域受到了许多计算机视觉和机器学习研究者的关注, 现在这一方向已经成为人工智能方向的研究热点. FCN的核心思想是搭建一个全卷积网络, 输入任意尺寸的图像, 经过模型的有效学习和推理得到相同尺寸的输出. FCN的提出给图像语义分割领域提供了新的思路, 但也存在很多的缺点, 比如特征分辨率低、对象存在多尺度问题等. 随着研究者不断的钻研, 卷积神经网络在图像分割领域逐渐得到了优化和拓展, 基于FCN的主流分割框架也层出不穷. 图像语义分割对于场景理解的重要性日渐突出, 被广泛应用到无人驾驶技术、无人机领域和医疗影像检测与分析等任务中. 因此, 对图像语义分割领域的研究将值得深入研究, 使其能够更好在实际应用中大放异彩.

    Abstract:

    Since the proposal of Fully Convolutional Network (FCN), applying deep learning to image semantic segmentation has attracted extensive attention from researchers in the field of computer vision and machine learning, becoming a research hotspot of artificial intelligence. The core idea of FCN is to build a fully convolutional network that accepts the input of arbitrary sizes and produces the output of the same sizes through efficient inference and learning. FCN provides a new idea for image semantic segmentation, but it also has many shortcomings, such as low feature resolution and the objects at multiple scales. As research progresses, the convolutional neural network has been gradually optimized and expanded in the field of image segmentation. In addition, the mainstream segmentation frameworks based on FCN have emerged one after another. Image semantic segmentation plays an increasingly important role in scene understanding, which is widely applied to the self-driving technique, the UAV field, detection and analysis of medical images, and other tasks. Therefore, image semantic segmentation is worth further study to better serve practical applications.

    参考文献
    相似文献
    引证文献
引用本文

李梦怡,朱定局.基于全卷积网络的图像语义分割方法综述.计算机系统应用,2021,30(9):41-52

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-12-07
  • 最后修改日期:2021-01-11
  • 录用日期:
  • 在线发布日期: 2021-09-04
  • 出版日期:
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号