摘要:在MOFs研究领域, 探寻新型MOFs仍然是非常困难的研究问题. 将MOFs进行“材料基因编码”后, 应用遗传算法(Genetic Algorithm, GA)可以快速探索新型MOFs, 但其性能依赖于设定的个体适应度函数, 且对新生成的MOFs个体的有效评估也影响了该方法的效果. 机器学习方法可以对MOFs的构效关系进行评估与预测, 人工神经网络(Artificial Neural Network, ANN)是众多机器学习方法中具有代表性的一个, 可以发掘非线性的构效关系. 本文提出将神经网络用于预测遗传算法生成的新型MOFs个体对CH4气体的吸附能力, 从而帮助遗传算法搜索新型MOFs. 实验结果表明, 神经网络可以有效评估新型MOFs材料, 证明了将神经网络与遗传算法相结合用于新型MOFs搜索和筛选的可行性.