基于遗传算法的Kubernetes资源调度算法
作者:
基金项目:

陕西省技术创新引导专项(2020CGXNG-012)


Kubernetes Resource Scheduling Algorithm Based on Genetic Algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    Kubernetes在优选阶段仅根据节点CPU和内存的利用率来决定节点的分值, 这只能保证单节点的资源利用率, 无法保证集群资源的负载均衡. 针对该问题, 提出一种基于遗传算法的Kubernetes资源调度算法, 该算法加入了网络带宽和磁盘IO两项评价指标, 同时为评价指标赋予不同权重值, 并且引入校验字典校验并修复遗传算法生成的新种群中不符合配置的个体. 实验结果表明, 与Kubernetes默认资源调度策略相比, 该算法考虑了集群中的所有节点的资源利用率, 在保证集群负载均衡方面有着更好的效果.

    Abstract:

    In the optimization stage, Kubernetes determines the score of a node only according to its utilization of CPU and memory. This can only guarantee the resource utilization of a single node but fails to achieve the load balancing of cluster resources. In response to this problem, a genetic algorithm-based Kubernetes resource scheduling algorithm is proposed. In the algorithm, two evaluation indicators, i.e., network bandwidth and disk IO, are added and assigned with different weights. In addition, a check dictionary is introduced to check and repair the individuals that do not meet the configuration in the new population generated by the genetic algorithm. Experimental results show that compared with the Kubernetes default resource scheduling strategy, this algorithm takes into account the resource utilization of all nodes in the cluster and performs better in ensuring cluster load balancing.

    参考文献
    [1] 张建勋, 古志民, 郑超. 云计算研究进展综述. 计算机应用研究, 2010, 27(2): 429–433. [doi: 10.3969/j.issn.1001-3695.2010.02.007
    [2] Sotomayor B, Keahey K, Foster I. Overhead matters: A model for virtual resource management. Proceedings of the 1st International Workshop on Virtualization Technology in Distributed Computing. Tampa, FL, USA. 2006. 5.
    [3] Sureshkumar M, Rajesh P. Optimizing the docker container usage based on load scheduling. Proceedings of the 2nd International Conference on Computing and Communications Technologies (ICCCT). Chennai, India. 2017.165–168.
    [4] 武志学. 云计算虚拟化技术的发展与趋势. 计算机应用, 2017, 37(4): 915–923. [doi: 10.11772/j.issn.1001-9081.2017.04.0915
    [5] Bernstein D. Containers and cloud: From LXC to Docker to Kubernetes. IEEE Cloud Computing, 2014, 1(3): 81–84. [doi: 10.1109/MCC.2014.51
    [6] Volkova VN, Chemenkaya LV, Desyatirikova EN, et al. Load balancing in cloud computing. Proceedings of 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering. Moscow and St. Petersburg, Russia. 2018. 387–390.
    [7] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735–1780. [doi: 10.1162/neco.1997.9.8.1735
    [8] 何龙, 刘晓洁. 一种基于应用历史记录的Kubernetes调度算法. 数据通信, 2019, (3): 33–36. [doi: 10.3969/j.issn.1002-5057.2019.03.009
    [9] 常旭征, 焦文彬. Kubernetes资源调度算法的改进与实现. 计算机系统应用, 2020, 29(7): 256–259. [doi: 10.15888/j.cnki.csa.007545
    [10] Kong XZ, Lin C, Jiang YX, et al. Efficient dynamic task scheduling in virtualized data centers with fuzzy prediction. Journal of Network and Computer Applications, 2011, 34(4): 1068–1077. [doi: 10.1016/j.jnca.2010.06.001
    [11] 李天宇. 基于强化学习的云计算资源调度策略研究. 上海电力学院学报, 2019, 35(4): 399–403
    [12] Wu B, Feng YP. Policy reuse for learning and planning in partially observable Markov decision processes. Proceedings of the 4th International Conference on Information Science and Control Engineering (ICISCE). Changsha, China. 2017.549–552.
    [13] Kang DK, Choi GB, Kim SH, et al. Workload-aware resource management for energy efficient heterogeneous Docker containers. Proceedings of 2016 IEEE Region 10 Conference (TENCON). Singapore. 2016. 2428–2431.
    [14] Rao J, Bu XP, Xu CZ, et al. A distributed self-learning approach for elastic provisioning of virtualized cloud resources. Proceedings of the IEEE 19th Annual International Symposium on Modelling, Analysis, and Simulation of Computer and Telecommunication Systems. Singapore. 2011. 45–54.
    [15] Tsoumakos D, Konstantinou I, Boumpouka C, et al. Automated, elastic resource provisioning for NoSQL clusters using TIRAMOLA. Proceedings of the 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing. Delft, the Netherlands. 2013. 34–41.
    [16] Liu D, Sui X, Li L. An energy-efficient virtual machine placement algorithm in cloud data center. Proceedings of the 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). Changsha, China. 2016. 719–723.
    [17] Khodar A, Al-Afare HAF, Alkhayat I. New scheduling approach for virtual machine resources in cloud computing based on genetic algorithm. Proceedings of 2019 International Russian Automation Conference (RusAutoCon). Sochi, Russia. 2019. 1–5.
    [18] 葛继科, 邱玉辉, 吴春明, 等. 遗传算法研究综述. 计算机应用研究, 2008, 25(10): 2911–2916. [doi: 10.3969/j.issn.1001-3695.2008.10.008
    [19] 张国辉, 吴立辉. 求解柔性作业车间调度的GATOC混合方法. 计算机工程与应用, 2015, 51(23): 266–270. [doi: 10.3778/j.issn.1002-8331.1502-0171
    [20] 贾花萍. 智能算法在数学建模比赛中的应用. 计算机系统应用, 2016, 25(8): 149–154. [doi: 10.15888/j.cnki.csa.005272
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胡程鹏,薛涛.基于遗传算法的Kubernetes资源调度算法.计算机系统应用,2021,30(9):152-160

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-30
  • 最后修改日期:2020-12-28
  • 在线发布日期: 2021-09-04
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号