基于卷积块注意力模块的图像描述生成模型
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

河南省电子商务大数据处理与分析重点实验室开放课题(2020-KF-7);陕西省教育厅科研计划(21JP049)


Image Caption Generation Model Based on Convolutional Block Attention Module
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    图像描述生成模型是使用自然语言描述图片的内容及其属性之间关系的算法模型. 对现有模型描述质量不高、图片重要部分特征提取不足和模型过于复杂的问题进行了研究, 提出了一种基于卷积块注意力机制模块(CBAM)的图像描述生成模型. 该模型采用编码器-解码器结构, 在特征提取网络Inception-v4中加入CBAM, 并作为编码器提取图片的重要特征信息, 将其送入解码器长短期记忆网络(LSTM)中, 生成对应图片的描述语句. 采用MSCOCO2014数据集中训练集和验证集进行训练和测试, 使用多个评价准则评估模型的准确性. 实验结果表明, 改进后模型的评价准则得分优于其他模型, 其中Model2实验能够更好地提取到图像特征, 生成更加准确的描述.

    Abstract:

    The image caption generation model uses natural language to describe the content of images and the relationship between attributes. In the existing models, there are problems of low description quality, insufficient feature extraction of important parts of images, and high complexity. Therefore, this study proposes an image caption generation model based on a Convolutional Block Attention Module (CBAM), which has an encoder-decoder structure. CBAM is added into the feature extraction network Inception-v4 and as an encoder, extracts the important feature information of the images. The information is then sent into the Long Short-Term Memory (LSTM) of the decoder to generate the caption of the corresponding pictures. The MSCOCO2014 data set is applied to training and testing, and multiple evaluation criteria are used to evaluate the accuracy of the model. The experimental results show that the improved model has a higher evaluation criterion score than other models, and Model2 can better extract image features and generate a more accurate description.

    参考文献
    相似文献
    引证文献
引用本文

余海波,陈金广.基于卷积块注意力模块的图像描述生成模型.计算机系统应用,2021,30(8):194-200

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-24
  • 最后修改日期:2020-12-22
  • 录用日期:
  • 在线发布日期: 2021-08-03
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号