抽水蓄能电站中基于边缘计算的任务卸载算法
作者:

Task Offloading Algorithm Based on Edge Computing in Pumped Storage Power Station
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为降低抽水蓄能电站中终端设备密集计算型任务的处理时延, 针对抽水蓄能电站的物联网体系, 提出了一种基于边缘计算的任务卸载算法. 在该文方案中, 首先基于层次分析法对计算任务进行优先级划分, 并以终端能耗为约束、以终端计算任务处理时延为优化目标建立卸载模型, 其次基于Q学习算法(Q-Learning, QL)探索系统的状态转移信息, 以获取终端设备与边缘节点间的最佳卸载策略. 另外, 采用深度学习( Deep Learning, DL)的方法映射状态与动作之间的关系, 避免算法迭代求解过程中的维度爆炸问题. 仿真结果表明, 本文提出的方法有效降低了抽水蓄能电站的任务平均执行时延, 能够大幅提高抽水蓄能电站的生产作业及安全监测等工作的执行效率.

    Abstract:

    To reduce the delay of processing intensive computing tasks by terminal equipment in pumped storage power stations , this paper proposes a task offloading algorithm based on edge computing for the Internet of Things (IoT) system of pumped storage power stations. Firstly, the computing tasks are prioritized based on the analytic hierarchy process, and an offloading model is built with the terminal energy consumption as the constraint and the processing delay of terminal computing tasks as the optimization objective. Secondly, the Q-Learning (QL) algorithm is adopted to collect the state transition information, in the hope to obtain the best offloading strategy between the terminal device and the edge node. Finally, Deep Learning (DL) is used to map the relationship between states and actions to avoid a dimensional explosion in the iterative solution of the algorithm. The simulation results show that the proposed method greatly reduces the average delay of computing tasks and can greatly improve the execution efficiency of production operations and safety monitoring associated with pumped storage power stations.

    参考文献
    [1] 郑帅, 鲁浩, 沙志成, 等. "十四五"山东储能规划发展研究. 国网技术学院学报, 2020, 23(5):21-24, 37.[doi:10.3969/j.issn.1008-3162.2020.05.006
    [2] 次鹏, 高燕. 抽水蓄能电站从数字化向智慧化转变进程中的档案工作新思路. 抽水蓄能电站工程建设文集2019. 北京, 中国. 2019.4.
    [3] Foster I, Zhao Y, Raicu I, et al. Cloud computing and grid computing 360-degree compared. Proceedings of 2008 Grid Computing Environments Workshop. Austin, TX, USA. 2008. 1-10.
    [4] 施巍松, 孙辉, 曹杰, 等. 边缘计算:万物互联时代新型计算模型. 计算机研究与发展, 2017, 54(5):907-924.[doi:10.7544/issn1000-1239.2017.20160941
    [5] Mao YY, You CS, Zhang J, et al. A survey on mobile edge computing:The communication perspective. IEEE Communications Surveys & Tutorials, 2017, 19(4):2322-2358
    [6] 王登辉, 陈毅红. 面向物联网的移动边缘计算任务卸载方法研究. 内江师范学院学报, 2020, 35(10):46-53
    [7] 单晓宇. 面向车联网的移动边缘计算卸载算法研究与实现[硕士学位论文]. 南京:南京邮电大学, 2020.
    [8] Ulukus S, Yener A, Erkip E, et al. Energy harvesting wireless communications:A review of recent advances. IEEE Journal on Selected Areas in Communications, 2015, 33(3):360-381.[doi:10.1109/JSAC.2015.2391531
    [9] Meng XL, Wang W, Wang YT, et al. Closed-form delay-optimal computation offloading in Mobile Edge Computing Systems. IEEE Transactions on Wireless Communications, 2019, 18(10):4653-4667.[doi:10.1109/TWC.2019.2926465
    [10] Liu J, Mao YY, Zhang J, et al. Delay-optimal computation task scheduling for mobile- edge computing system. Proceedings of 2016 IEEE International Symposium on Information Theory (ISIT). Barcelona, Spain. 2016. 1451-1455.
    [11] Li J, Gao H, Lv TJ, et al. Deep reinforcement learning based computation offloading and resource allocation for MEC. Proceedings of 2018 IEEE Wireless Communications and Networking Conference. Barcelona, Spain. 2018. 1-6.
    [12] 何铮, 张林. 泛在电力物联网下的抽水蓄能电站智慧管理模式思考. 水电与抽水蓄能, 2019, 5(5):27-30
    [13] 李璟延. 多能耦合协同的新一代抽水蓄能电站. 水电与抽水蓄能, 2019, 5(5):7-11
    [14] 路平. 抽水蓄能电站自动化系统智能化发展. 电子技术与软件工程, 2019, (19):109-110
    [15] 路振刚, 黄悦照, 王洪玉, 等. 抽水蓄能及水电站项目群建设智慧管控系统总体构想. 水电与抽水蓄能, 2019, 5(4):1-5
    [16] Bera S, Misra S, Rodrigues JJPC. Cloud computing applications for smart grid:A survey. IEEE Transactions on Parallel and Distributed Systems, 2015, 26(5):1477-1494.[doi:10.1109/TPDS.2014.2321378
    [17] 黄健. 集成信息系统在抽水蓄能电站生产管理过程中的应用研究[硕士学位论文]. 天津:天津大学, 2012.
    [18] Fayek HH, Shenouda A. Design and frequency control of small scale photovoltaic hydro pumped storage system. Proceedings of the IEEE 2nd International Conference on Renewable Energy and Power Engineering (REPE). Toronto, ON, Canada. 2019. 32-37.
    [19] Zhao PT, Tian H, Qin C, et al. Energy-saving offloading by jointly allocating radio and computational resources for mobile edge computing. IEEE Access, 2017, 5:11255-11268.[doi:10.1109/ACCESS.2017.2710056
    [20] Huang YL, Sun WL. An AHP-based risk assessment for an industrial IoT cloud. Proceedings of 2018 IEEE International Conference on Software Quality, Reliability and Security Companion. Lisbon, Portugal. 2018. 637-638.
    [21] Huang KB, Zhu GX, You CS, et al. Communication, computing, and learning on the edge. Proceedings of 2018 IEEE International Conference on Communication Systems. Chengdu, China. 2018. 268-273.
    [22] 刘建伟, 高峰, 罗雄麟. 基于值函数和策略梯度的深度强化学习综述. 计算机学报, 2019, 42(6):1406-1438.[doi:10.11897/SP.J.1016.2019.01406
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

崔运进,江帆,黄建德,阎峻,赵锋.抽水蓄能电站中基于边缘计算的任务卸载算法.计算机系统应用,2021,30(8):225-231

复制
分享
文章指标
  • 点击次数:816
  • 下载次数: 1722
  • HTML阅读次数: 1224
  • 引用次数: 0
历史
  • 收稿日期:2020-11-18
  • 最后修改日期:2020-12-21
  • 在线发布日期: 2021-08-03
文章二维码
您是第11205711位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号