抽水蓄能电站中基于边缘计算的任务卸载算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Task Offloading Algorithm Based on Edge Computing in Pumped Storage Power Station
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为降低抽水蓄能电站中终端设备密集计算型任务的处理时延, 针对抽水蓄能电站的物联网体系, 提出了一种基于边缘计算的任务卸载算法. 在该文方案中, 首先基于层次分析法对计算任务进行优先级划分, 并以终端能耗为约束、以终端计算任务处理时延为优化目标建立卸载模型, 其次基于Q学习算法(Q-Learning, QL)探索系统的状态转移信息, 以获取终端设备与边缘节点间的最佳卸载策略. 另外, 采用深度学习( Deep Learning, DL)的方法映射状态与动作之间的关系, 避免算法迭代求解过程中的维度爆炸问题. 仿真结果表明, 本文提出的方法有效降低了抽水蓄能电站的任务平均执行时延, 能够大幅提高抽水蓄能电站的生产作业及安全监测等工作的执行效率.

    Abstract:

    To reduce the delay of processing intensive computing tasks by terminal equipment in pumped storage power stations , this paper proposes a task offloading algorithm based on edge computing for the Internet of Things (IoT) system of pumped storage power stations. Firstly, the computing tasks are prioritized based on the analytic hierarchy process, and an offloading model is built with the terminal energy consumption as the constraint and the processing delay of terminal computing tasks as the optimization objective. Secondly, the Q-Learning (QL) algorithm is adopted to collect the state transition information, in the hope to obtain the best offloading strategy between the terminal device and the edge node. Finally, Deep Learning (DL) is used to map the relationship between states and actions to avoid a dimensional explosion in the iterative solution of the algorithm. The simulation results show that the proposed method greatly reduces the average delay of computing tasks and can greatly improve the execution efficiency of production operations and safety monitoring associated with pumped storage power stations.

    参考文献
    相似文献
    引证文献
引用本文

崔运进,江帆,黄建德,阎峻,赵锋.抽水蓄能电站中基于边缘计算的任务卸载算法.计算机系统应用,2021,30(8):225-231

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-18
  • 最后修改日期:2020-12-21
  • 录用日期:
  • 在线发布日期: 2021-08-03
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号