用于单张图像去雨滴的轻量级网络
作者:

Lightweight Network for Single Image Raindrop Removal
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    图像去雨是图像低等级任务中的热点问题, 去雨滴又是图像去雨中很重要的一种情况, 附着在玻璃或相机镜头上的雨滴会显著降低场景的可见性. 因此, 去除雨滴将有助于许多计算机视觉应用, 特别是户外监控系统和智能驾驶系统. 本文提出了一种用于单张图像去雨滴的轻量级网络算法(PRSEDNet), 该网络算法采用递归计算,运用卷积长短期记忆网络(Convolutional LSTM network)和特征提取模块来提取特征, 通过与原图像结合来去除雨滴, 最终获得高质量的无雨滴清晰图. 实验结果表明, 我们的PRSEDNet与现有的基于深度学习的去雨滴算法相比, 在能达到高效的去雨滴性能的同时, 有更少的参数量且计算效率高.

    Abstract:

    Image de-raining is a hot issue in the low-level tasks of images, in which raindrop removal is critical. Raindrops adhering to glass or camera lenses will significantly reduce the visibility of the scenes. Therefore, removing raindrops will benefit various computer vision tasks, especially outdoor surveillance systems and intelligent driving systems. In this study, we propose a lightweight network (PRSEDNet) to remove raindrops from a single image. With recursive computation, this network uses a convolutional long short-term memory network and a feature extraction module to extract features. In combination with the original image, the final high-quality clear image without raindrops is obtained. The experimental results show that PRSEDNet, compared with the existing deep learning-based raindrop removal algorithms, possesses few parameters and high computational efficiency and can achieve efficient raindrop removal.

    参考文献
    [1] Kurihata H, Takahashi T, Ide I, et al. Rainy weather recognition from in-vehicle camera images for driver assistance. IEEE Proceedings. Intelligent Vehicles Symposium. Las Vegas, NV, USA. 2005. 205-210.
    [2] Yamashita A, Tanaka Y, Kaneko T. Removal of adherent waterdrops from images acquired with stereo camera. IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, AB, Canada. 2005. 400-405.
    [3] Yamashita A, Fukuchi I, Kaneko T. Noises removal from image sequences acquired with moving camera by estimating camera motion from spatio-temporal information. IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, MO, USA. 2009. 3794-3801.
    [4] Eigen D, Krishnan D, Fergus R. Restoring an image taken through a window covered with dirt or rain. Proceedings of the IEEE International Conference on Computer Vision. Sydney, NSW, Australia. 2013. 633-640.
    [5] Qian R, Tan RT, Yang WH, et al. Attentive generative adversarial network for raindrop removal from a single image. IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. 2018. 2482-2491.
    [6] Ren DW, Zuo WM, Hu QH, et al. Progressive image deraining networks:A better and simpler baseline. IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, CA, USA. 2019. 3932-3941.
    [7] Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. Proceedings of the 27th International Conference on Machine Learning. Haifa, Israel. 2010. 807-814.
    [8] Shi XJ, Chen ZR, Wang H, et al. Convolutional LSTM network:A machine learning approach for precipitation nowcasting. Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, QC, Canada. 2015. 802-810.
    [9] Hu J, Shen L, Albanie S, et al. Squeeze-and-Excitation networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023.[doi:10.1109/TPAMI.2019.2913372
    [10] Fu XY, Huang JB, Zeng DL, et al. Removing rain from single images via a deep detail network. IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA. 2017. 1715-1723.
    [11] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA. 2016. 770-778.
    [12] Yang HH, Yang CHH, Tsai YCJ. Y-Net:Multi-scale feature aggregation network with wavelet structure similarity loss function for single image dehazing. IEEE International Conference on Acoustics, Speech and Signal Processing. Barcelona, Spain. 2020. 2628-2632.
    [13] Stéphane M. A WaveletTour of Signal Processing:The Sparse Way. Academic Press, 2009.
    [14] Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/video quality assessment. Electronics Letters, 2008, 44(13):800-801.[doi:10.1049/el:20080522
    [15] Wang Z, Bovik AC, Sheikh HR, et al. Image quality assessment:From error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, 13(4):600-612.[doi:10.1109/TIP.2003.819861
    [16] Kingma D, Ba J. Adam:A method for stochastic optimization. 3rd International Conference for Learning Representations. San Diego, CA, USA. 2015.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蔡林纹,王冠.用于单张图像去雨滴的轻量级网络.计算机系统应用,2021,30(8):201-206

复制
分享
文章指标
  • 点击次数:986
  • 下载次数: 1827
  • HTML阅读次数: 2492
  • 引用次数: 0
历史
  • 收稿日期:2020-11-10
  • 最后修改日期:2020-12-12
  • 在线发布日期: 2021-08-03
文章二维码
您是第11207286位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号