摘要:在互联网医疗领域, 智能AI分科室是一个很关键的环节, 就是根据患者病情描述、疾病特征、药品等信息将患者分配到匹配的科室, 可以利用深层双向Transformer结构的BERT预训练语言模型增强字的语义, 但是患者病情文本描述具有信息稀疏的特点, 不利于BERT的充分学习其中特征. 本文提出了一种DNNBERT模型. 是一种融合知识的联合训练模型, DNNBERT结合了神经网络(DNN)和Transformer模型的优势, 能从文本中学习到更多的语义. 实验证明DNNBERT的计算时间相比BERT-large速度提升1.7倍, 并且准确率比ALBERT的F1值提高了0.12, 比TextCNN提高了0.17, 本文的工作将为特征稀疏学习提供新思路, 也将为基于深度Transformer的模型应用于生产提供新的思路.