摘要:在信息时代, 面对浩繁的信息, 用户急需高效的推荐系统为他们选择最感兴趣的内容. 我们面临的一个重要问题是用户的兴趣会随时间发生变化并且不断有新用户使用系统. 因此, 一个好的推荐系统需要根据用户最新的少量交互信息及时响应用户兴趣的变化和快速捕捉到新用户的兴趣以更好地满足用户的需求. 但是, 根据我们的调研, 现有的推荐系统方法还没有很好地满足响应性(responsiveness)的需求. 为了解决这个问题, 我们提出了一套基于元学习(Meta Learning) 的响应式推荐系统设计. 该方法能够及时响应用户最新的交互信息, 同时提高对老用户和新用户的推荐质量. 总的来说, 我们利用元学习从大量历史交互信息中挖掘出先验知识, 使得模型仅仅通过少量新的交互信息快速地学习出用户兴趣, 从而满足响应性的需求. 我们在MovieLens和Nertflix两个推荐系统中常用的公开数据集上验证了我们方法的有效性.