基于元学习的响应式推荐系统
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Responsive Recommender System Based on Meta Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在信息时代, 面对浩繁的信息, 用户急需高效的推荐系统为他们选择最感兴趣的内容. 我们面临的一个重要问题是用户的兴趣会随时间发生变化并且不断有新用户使用系统. 因此, 一个好的推荐系统需要根据用户最新的少量交互信息及时响应用户兴趣的变化和快速捕捉到新用户的兴趣以更好地满足用户的需求. 但是, 根据我们的调研, 现有的推荐系统方法还没有很好地满足响应性(responsiveness)的需求. 为了解决这个问题, 我们提出了一套基于元学习(Meta Learning) 的响应式推荐系统设计. 该方法能够及时响应用户最新的交互信息, 同时提高对老用户和新用户的推荐质量. 总的来说, 我们利用元学习从大量历史交互信息中挖掘出先验知识, 使得模型仅仅通过少量新的交互信息快速地学习出用户兴趣, 从而满足响应性的需求. 我们在MovieLens和Nertflix两个推荐系统中常用的公开数据集上验证了我们方法的有效性.

    Abstract:

    In the era of information explosion, most users urgently need timely and effective recommendation service. As a result, the number of interactions, which a recommender system requires to recognize the drifted interests of existing users or the unknown preference of new users, would largely determine the application’s survival rate in the highly competitive consumer market. However, for the best of our knowledge, this responsiveness aspect of recommender system is far from well-studied. To bridge this gap, we propose a task-based meta learning approach towards responsive recommender system, which helps improve the recommendation quality for both existing and new users after the system only observes a limited number of incoming interactions. Basically, the leverage of meta learning contributes to the fast adaption to the optimum of the underlying model with few interactions to satisfy the responsiveness requirement. Extensive experiments on MovieLens and Netflix datasets highly demonstrate the responsiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

武多才,张谧.基于元学习的响应式推荐系统.计算机系统应用,2021,30(8):60-66

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-11-11
  • 最后修改日期:2020-12-21
  • 录用日期:
  • 在线发布日期: 2021-08-03
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号