基于Logistic混沌映射优化的君主蝶优化算法
作者:
基金项目:

宁波市自然科学基金(202003N4159);国家级大学生创新创业训练计划(202013277008)


Monarchs Butterfly Optimization Algorithm Based on Logistic Chaotic Map Optimization
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    君主蝶优化算法(Monarch Butterfly Optimization, MBO)是2015年提出的一种模拟君主蝶的迁徙行为的元启发式算法. 通过对MBO的研究发现其在处理高维问题时易陷入局部最优与迁移算子产生的子代受父代影响过大的问题, 本文提出新算法, Logistic混沌映射君主蝶优化算法(Monarch Butterfly Optimization with Logistic Chaotic Map, LCMMBO), 使用Logistic混沌映射扰动最优解以增强其跳出局部最优的能力, 优化了迁移算子中子代传递的方式以增强其全局搜索的能力. 通过仿真实验发现其在处理高维的优化问题时表现出良好的性能, 不仅鲁棒性优异, 而且跳出局部最优的能力强.

    Abstract:

    Monarch Butterfly Optimization (MBO) is a meta-heuristic algorithm proposed in 2015 to simulate the migration behavior of monarch butterflies. There are two problems in the MBO algorithm when dealing with high-dimensional problems: It is easy to fall into local optimum, and the offspring generated by migration operators are greatly influenced by their parents. For these reasons, we propose a new algorithm, Monarch Butterfly Optimization with a Logistic Chaotic Map (LCMMBO). It uses a Logistic chaotic map to disturb the optimal solution and optimizes the offspring transfer mode in the migration operators. These operations respectively aim to enhance the ability to jump out of the local optimum and the ability of global search. The simulation results show that, in the case of handling high-dimensional optimization problems, the new algorithm enjoys excellent robustness and a strong ability to jump out of the local optimum.

    参考文献
    [1] Dorigo M, Maniezzo V, Colorni A. Ant system:Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1996, 26(1):29-41.[doi:10.1109/3477.484436
    [2] Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of International Conference on Neural Networks (ICNN'95). Perth, WA, Australia. 1995. 1942-1948.
    [3] Yang XS. A new metaheuristic bat-inspired algorithm. In:González JR, Pelta DA, Cruz C, et al., eds. Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Berlin Heidelberg:Springer, 2010. 65-74.
    [4] Tereshko V. Reaction-diffusion model of a honeybee colony's foraging behaviour. 6th International Conference on Parallel Problem Solving from Nature PPSN VI. Paris, France. 2000. 807-816.
    [5] Gandomi AH, Yang XS, Alavi AH. Mixed variable structural optimization using Firefly algorithm. Computers & Structures, 2011, 89(23-24):2325-2336.[doi:10.1016/j.compstruc.2011.08.002
    [6] Mirjalili S. Dragonfly algorithm:A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Computing and Applications, 2016, 27(4):1053-1073.[doi:10.1007/s00521-015-1920-1
    [7] Wang GG, Deb S, Cui ZH. Monarch butterfly optimization. Neural Computing and Applications, 2019, 31(7):1995-2014.[doi:10.1007/s00521-015-1923-y
    [8] 王亚, 熊焰, 龚旭东, 等. 基于混沌PSO算法优化RBF网络入侵检测模型. 计算机工程与应用, 2013, 49(10):84-87.[doi:10.3778/j.issn.1002-8331.1212-0089
    [9] 冯艳红, 杨娟, 贺毅朝, 等. 差分进化帝王蝶优化算法求解折扣{0-1}背包问题. 电子学报, 2018, 46(6):1343-1350.[doi:10.3969/j.issn.0372-2112.2018.06.010
    [10] Liao X, Zhou JZ, Ouyang S, et al. An adaptive chaotic artificial bee colony algorithm for short-term hydrothermal generation scheduling. International Journal of Electrical Power & Energy Systems, 2013, 53:34-42
    [11] 张诣. Logistic混沌映射. 电脑知识与技术, 2008, 4(35):2538-2539
    [12] 魏锋涛, 岳明娟, 郑建明. 基于多策略融合的改进人工蜂群算法. 计算机工程与应用, 2018, 54(5):111-116, 155.[doi:10.3778/j.issn.1002-8331.1609-0248
    [13] 孟鑫, 安毅生, 张志明. 基于交互式的并行蚁群优化算法. 计算机系统应用, 2015, 24(2):224-228.[doi:10.3969/j.issn.1003-3254.2015.02.042
    [14] 蒙丽萍, 王勇, 黄华娟. 采用动态分割种群策略的改进MBO. 计算机工程与应用, 2017, 53(18):149-156.[doi:10.3778/j.issn.1002-8331.1603-0205
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

倪龙雨,符强,吴沧辰.基于Logistic混沌映射优化的君主蝶优化算法.计算机系统应用,2021,30(7):150-157

复制
分享
文章指标
  • 点击次数:963
  • 下载次数: 2109
  • HTML阅读次数: 1597
  • 引用次数: 0
历史
  • 收稿日期:2020-11-05
  • 最后修改日期:2020-12-12
  • 在线发布日期: 2021-07-02
文章二维码
您是第11202453位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号