摘要:Webshell是一种隐蔽性较高的Web攻击工具, 其作用是获取服务器的操作权限. 在编写Webshell时, 攻击者通过一系列免杀技术来绕过防火墙, 这导致现有方法检测Webshell的效果不佳. 针对这一现状, 本文从文本分类的角度出发, 提出一种基于Bi-GRU的Webshell检测方法. 首先将网页脚本文件进行编译, 得到opcode指令; 然后, 通过word2vec算法将指令转换为特征向量; 最后, 使用多种深度学习模型进行训练, 以准确率、误报率、漏报率作为评估标准. 最终实验结果表明, Bi-GRU检测效果优于其他算法模型, 证明该算法是可行的.