多任务卷积神经网络的电梯乘客识别方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金-海峡联合基金重点项目(U1805263); 福建省引导性项目(2019H0009, 2020H0011); 福建省自然科学基金(2019J01427)


Elevator Passenger Identification Method Based on Multi-Task Convolutional Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电梯安全监测系统应用中, 对于电梯乘客识别往往采用红外传感技术或是传统人脸检测算法如Haar-like、HOG实现, 但应用效果并非很理想. 近年来随着深度学习的发展, 基于卷积神经网络的人脸检测算法在精度上高于传统人脸检测算法, 被多个领域应用. 基于多任务级联卷积神经人脸检测算法模型小、运算快的特点而将其应用到电梯安全监测系统中的电梯乘客识别, 通过引入Inception模块思想, 利用不同大小卷积核并行操作增加各级网络的深度和宽度, 提升网络特征提取能力, 结合Batch Normalization算法提高模型训练速度和网络的分类能力. 实验结果表明, 改进后算法的精度比原算法提升了2%, 实现高准确率的电梯乘客识别.

    Abstract:

    In the application of safety monitoring system of elevators, infrared sensor technology or traditional face detection algorithms involving Haar-like and HOG features are often used for the recognition of elevator passengers with poor effect though. With the development of deep learning in recent years, the face detection algorithm based on convolutional neural networks is more accurate than traditional face detection algorithms and has been applied in many fields. Moreover, the face detection algorithm based on multi-task cascaded convolutional neural networks is adopted to recognize elevator passengers in the safety monitoring system owing to its small model and fast operation. With the inception module introduced, the depth and width of networks at all levels are raised by the parallel operation of convolutional cores of different sizes for better extraction of network features; models are trained faster and network classification is enhanced through batch normalization. The experimental results show that the accuracy of the improved algorithm is 2% higher than that of the original one and can thus realize the highly accurate recognition of elevator passengers.

    参考文献
    相似文献
    引证文献
引用本文

王廷银,郭威,吴允平.多任务卷积神经网络的电梯乘客识别方法.计算机系统应用,2021,30(6):278-285

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-10-10
  • 最后修改日期:2020-11-02
  • 录用日期:
  • 在线发布日期: 2021-06-05
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号