摘要:为了保证自动换筒系统中的纱线自动打结机能够正常运行, 需要对管道吸取的纱线进行检测. 纱线纤细、种类繁多且颜色各异, 传感器方法难以胜任, 使用图像处理的方式较为合适. 但是对于纱线检测问题传统的图像处理方法复杂且检测准确率低, 难以解决纱线种类多、尺寸不一以及颜色多等问题, 故本文提出了一种基于Inception v4中Inception-ResNet-A块进行改进的多尺度深度可分离卷积块组成的网络来检测管道中的纱线. 其中改进的多尺度深度可分离卷积块采用3×3卷积核的深度可分离卷积层代替Inception-ResNet-A块中3×3传统卷积层并去除了其中的一些1×1卷积层, 简化卷积块的计算量以及参数量, 此外还结合了残差网络ResNet的方法进行通道融合, 防止特征丢失. 试验结果表明, 该网络模型具有非常好的泛化能力以及辨识效果.