基于深度学习的管道纱线及其颜色检测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Pipe Yarn and Color Detection Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了保证自动换筒系统中的纱线自动打结机能够正常运行, 需要对管道吸取的纱线进行检测. 纱线纤细、种类繁多且颜色各异, 传感器方法难以胜任, 使用图像处理的方式较为合适. 但是对于纱线检测问题传统的图像处理方法复杂且检测准确率低, 难以解决纱线种类多、尺寸不一以及颜色多等问题, 故本文提出了一种基于Inception v4中Inception-ResNet-A块进行改进的多尺度深度可分离卷积块组成的网络来检测管道中的纱线. 其中改进的多尺度深度可分离卷积块采用3×3卷积核的深度可分离卷积层代替Inception-ResNet-A块中3×3传统卷积层并去除了其中的一些1×1卷积层, 简化卷积块的计算量以及参数量, 此外还结合了残差网络ResNet的方法进行通道融合, 防止特征丢失. 试验结果表明, 该网络模型具有非常好的泛化能力以及辨识效果.

    Abstract:

    To ensure the normal operation of the automatic knotting machine of yarn in the automatic bobbin changing system, we need to detect the yarn sucked by the pipe. Yarn is detected by image processing instead of sensors because it is thin with diverse types and colors. However, traditional image processing methods are too complex and inaccurate to identify yarn with various types, sizes, and colors. This study proposes a network of multi-scale depth separable convolution blocks modified based on Inception-Resnet-A block of Inception v4 to detect yarn in pipes. The conventional 3×3 convolution layers in the Inception-ResNet-A block is replaced with the depth separable convolution layers of the 3×3 convolution kernel, and some of the 1×1 convolution layers are removed for less parameters of convolution blocks and simpler calculation. In addition, ResNet is employed for channel fusion to prevent feature loss. According to the experimental results, this network model is remarkable in generalization and recognition.

    参考文献
    相似文献
    引证文献
引用本文

李进飞,李建强,段玉堂,任国栋,史伟民.基于深度学习的管道纱线及其颜色检测.计算机系统应用,2021,30(6):311-315

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-10-13
  • 最后修改日期:2020-11-16
  • 录用日期:
  • 在线发布日期: 2021-06-05
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号