摘要:针对目前基于评论文本的推荐算法存在文本特征和隐含信息提取能力不足的问题, 提出一种基于注意力机制的深度学习推荐算法. 通过分别构建用户和项目的评论文本表示, 利用双向门控循环单元提取文本的上下文依赖关系以获得文本特征表示, 引入注意力机制, 更准确的获取用户兴趣偏好和项目属性特征. 将生成的用户和项目评论数据的两组隐含特征分别输入全连接层处理, 再合并到同一个向量空间进行评分预测, 得到推荐结果. 在Yelp和Amazon两个公开数据集中进行实验, 结果表明所提出的算法与其他算法相比, 具有更好的推荐性能.