基于注意力机制的深度学习推荐算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(11971277); 山西省教育科学“十三五”规划项目(GH-18045); 山西大同大学校级科研项目(2017K7)


Deep Learning Recommendation Algorithm Based on Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前基于评论文本的推荐算法存在文本特征和隐含信息提取能力不足的问题, 提出一种基于注意力机制的深度学习推荐算法. 通过分别构建用户和项目的评论文本表示, 利用双向门控循环单元提取文本的上下文依赖关系以获得文本特征表示, 引入注意力机制, 更准确的获取用户兴趣偏好和项目属性特征. 将生成的用户和项目评论数据的两组隐含特征分别输入全连接层处理, 再合并到同一个向量空间进行评分预测, 得到推荐结果. 在Yelp和Amazon两个公开数据集中进行实验, 结果表明所提出的算法与其他算法相比, 具有更好的推荐性能.

    Abstract:

    This study proposes a deep learning recommendation algorithm based on attention mechanism to solve the problem that the current recommendation algorithms based on comment texts have insufficient extraction of text features and implicit information. The comment text representations of users and items are constructed, and the context dependency of texts is extracted by bidirectional gated recurrent units for text feature representations. Moreover, the attention mechanism is introduced to obtain the interest preference of users and the attribute features of items more accurately. The two sets of hidden features of the generated user and item comment data are respectively input into the fully connected layer and then merge into the same vector space for rating prediction. As a result, the recommendation results are obtained. Experiments on two public data sets, Yelp and Amazon, show that the proposed algorithm has better recommendation performance than other algorithms.

    参考文献
    相似文献
    引证文献
引用本文

申晋祥,鲍美英.基于注意力机制的深度学习推荐算法.计算机系统应用,2021,30(6):220-225

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-10-08
  • 最后修改日期:2020-11-02
  • 录用日期:
  • 在线发布日期: 2021-06-05
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号