基于种群关系的多种群粒子群协同优化算法
作者:
基金项目:

国家自然科学基金(61702185); 河南省高等学校重点科研项目(19B520014); 河南省高等学校青年骨干教师培养计划(2017GGJS270)


Multi-Swarm Particle Swarm Optimization Based on Population Relation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    传统粒子群优化算法容易陷入局部最优解, 搜索效率不高, 针对此问题, 提出了一种基于种群关系和斥力因子的多种群粒子群优化算法SRB-PSO (Swarm-Relation-Based PSO). 根据当前搜索结果定义种群之间统治、对等和被统治3种关系, 通过引入斥力因子来保证种群间搜索的多样性, 并通过统治和被统治关系提高算法的搜索效率, 从而在改善算法的全局搜索性能的同时提高解的质量. 将算法与其他几种主流粒子群优化改进算法在标准测试集上进行对比, 实验结果证明了SRB-PSO算法能较好地保持粒子多样性, 全局搜索能力强, 在解决多峰函数时的性能优于其他几种主流粒子群优化改进算法.

    Abstract:

    Traditional Particle Swarm Optimization (PSO) is likely to converge to local optima when applied to multimodal problems, with low search efficiency. In this study, a novel multi-swarm PSO algorithm based on swarm relations and repulsion factors is proposed, called Swarm-Relation-Based PSO (SRB-PSO). Three swarm relations, including dominance, equivalence, and weakness, are defined according to the search results. The search diversity is guaranteed by introducing repulsion factors among equivalent populations and the search efficiency is increased by dominance and weakness relations. Thus, the global search ability of the algorithm is enhanced and the solution quality is improved. The new algorithm and several other versions of PSO are compared on a set of benchmark functions. The results show that the algorithm proposed in this study can well maintain the particle diversity and has outstanding global search ability. The proposed algorithm outperforms the other algorithms when solving multimodal problems.

    参考文献
    [1] Kennedy J, Eberhart R. Particle swarm optimization. IEEE International Conference on Neural Networks. Perth: IEEE, 1995. 1942–1948.
    [2] 徐艳蕾, 朱炽阳, 李陈孝, 等. 基于颜色系数反向粒子群模型的田间作物分割方法. 农业工程学报, 2018, 34(3): 173–179. [doi: 10.11975/j.issn.1002-6819.2018.03.023
    [3] 唐佳, 王丹, 贾宏杰, 等. 基于元模型辅助粒子群算法的主动配电网最优经济运行. 电力系统自动化, 2018, 42(4): 95–103. [doi: 10.7500/AEPS20170630006
    [4] 杨帆, 周丽红. 基于改进粒子群优化的四杆机构运动轨迹误差研究. 组合机床与自动化加工技术, 2018, (2): 5–8
    [5] 安宗权, 王匀. 基于改进粒子群算法的车辆被动悬架优化与仿真研究. 现代制造工程, 2018, (1): 63–68
    [6] Eberhart R, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Nagoya: IEEE, 1995. 39–43.
    [7] 靳雁霞, 张鑫, 薛丹. 具有自适应逃逸的环状全互连结构粒子群算法. 微电子学与计算机, 2018, 35(2): 1–5, 10
    [8] 焦重阳, 周清雷, 张文宁. 混合拓扑结构的粒子群算法及其在测试数据生成中的应用研究. 计算机科学, 2017, 44(12): 249–254. [doi: 10.11896/j.issn.1002-137X.2017.12.045
    [9] Shi Y, Eberhart R. A modified particle swarm optimizer. The 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence. Anchorage: IEEE, 1998. 69–73.
    [10] 董红斌, 李冬锦, 张小平. 一种动态调整惯性权重的粒子群优化算法. 计算机科学, 2018, 45(2): 98–102. [doi: 10.11896/j.issn.1002-137X.2018.02.017
    [11] Gong YJ, Zhang J. Small-world particle swarm optimization with topology adaptation. Proceeding of the Fifteenth Annual Conference on Genetic and Evolutionary Computation. Lille: Association for Computing Machinery, 2013. 25–32. [doi: 10.1145/2463372.2463381]
    [12] 曹玉莲, 李文锋, 张煜. 基于拟熵自适应启动局部搜索策略的混合粒子群算法. 电子学报, 2018, 46(1): 110–117. [doi: 10.3969/j.issn.0372-2112.2018.01.016
    [13] Geng ZQ, Zhu QX. Multi-swarm PSO and its application in operational optimization of ethylene cracking furnace. 7th World Congress on Intelligent Control and Automation. Chongqing: IEEE, 2008. 103–106.
    [14] Yan YY, Hu YY, Guo BL. Parameters-optimized multi-subswarms particle swarm optimization. 2011 International Conference of Soft Computing and Pattern Recognition (SoCPaR). Dalian: IEEE, 2011. 301–305.
    [15] Liang JJ, Suganthan PN. Dynamic multi-swarm particle swarm optimizer. Proceedings 2005 IEEE Swarm Intelligence Symposium. Pasadena: IEEE, 2005. 124–129.
    [16] 胡成玉, 吴湘宁, 王永骥. 斥力势场下的多粒子群协同动态优化算法及其应用. 小型微型计算机系统, 2011, 32(7): 1325–1330
    [17] 曾辉, 王倩, 夏学文, 等. 基于自适应多种群的粒子群优化算法. 计算机工程与应用, 2018, 54(10): 59–65. [doi: 10.3778/j.issn.1002-8331.1711-0048
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘悦,杨桦,王青正.基于种群关系的多种群粒子群协同优化算法.计算机系统应用,2021,30(10):148-155

复制
分享
文章指标
  • 点击次数:872
  • 下载次数: 2139
  • HTML阅读次数: 2689
  • 引用次数: 0
历史
  • 收稿日期:2020-09-19
  • 最后修改日期:2020-10-21
  • 在线发布日期: 2021-10-08
文章二维码
您是第11418485位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号