摘要:传统主题模型方法很大程度上依赖于词共现模式生成文档主题, 短文本由于缺乏足够的上下文信息导致的数据稀疏性成为传统主题模型在短文本上取得良好效果的瓶颈. 基于此, 本文提出一种基于语义增强的短文本主题模型, 算法将DMM (Dirichlet Multinomial Mixture)与词嵌入模型相结合, 通过训练全局词嵌入与局部词嵌入获得词的向量表示, 融合全局词嵌入向量与局部词嵌入向量计算词向量间的语义相关度, 并通过主题相关词权重进行词的语义增强计算. 实验表明, 本文提出的模型在主题一致性表示上更准确, 且提升了模型在短文本上的分类正确率.