基于AGRU-GNN的图网络社交推荐算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61672337)


AGRU-GNN Graph Network for Social Recommendation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在推荐系统中, 用户对物品的兴趣是动态变化的, 会受用户自身历史行为、朋友历史行为甚至短时热点等多方面因素影响. 而如何在推荐系统中对用户的时序兴趣进行描述并提取有效信息, 一直以来是推荐算法的一大挑战之一. 本文在图神经网络(GNN)推荐算法的基础上, 提出一种基于注意力门控循环单元(Attention-GRU)的改进图网络算法, 对用户、物品的交互时序历史进行特征建模, 于此同时结合社交网络将此时序特征在用户、物品之间传播. 算法在Ciao与Epionions数据集上进行了验证, 并与其他相关工作进行对比, 证明了该模型有效地提取了用户、物品的时序特征, 提升了推荐系统的有效性.

    Abstract:

    In a recommendation system, users’ interest in items changes dynamically and is affected by various factors such as users' own historical behaviors, their friends’ historical behaviors, and even short-term hot spots. How to describe users’ temporal interests in a recommendation system and extract effective information has always been one of the challenges for the recommendation algorithms. On the basis of the Graph Neural Network (GNN) recommendation algorithm, we propose an improved graph network algorithm based on the Attention Gated Recurrent Unit (Attention-GRU) in this study. Furthermore, feature modeling is performed on the temporal interactive history of users and items, and in combination with social network, the temporal characteristics are transmitted between users and items. In addition, the proposed algorithm is verified on the Ciao and Epionions data sets and compared with other related work, proving that the model proposed in this study can effectively extract the temporal characteristics of users and items and improve the effectiveness of the recommendation systems.

    参考文献
    相似文献
    引证文献
引用本文

卓佳宁,雷景生,周雪雪.基于AGRU-GNN的图网络社交推荐算法.计算机系统应用,2021,30(5):219-227

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-09-21
  • 最后修改日期:2020-10-21
  • 录用日期:
  • 在线发布日期: 2021-05-06
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号