摘要:针对目前协同过滤推荐算法存在的数据稀疏性和冷启动等问题, 对融合专家信任的协同过滤推荐算法进行了研究和改进. 改进算法结合DBSCAN初始聚类中心优化的思想, 将用户划分到不同的社区簇中. 考虑到用户活跃度偏差对相似度计算的影响, 加入用户活跃度惩罚权重对相似度进行了改进. 在选取了专家用户后, 考虑到专家评估过的不同项目的专家信任度值不是一成不变的, 引入项目平衡因子来处理项目之间的差异, 使专家对其评价过的每个项目都有独立的专家信任度值. MovieLens数据集上的实验结果显示, 该算法可有效缓解数据稀疏性及冷启动问题, 提高了推荐精度.