可穿戴传感步态模式深度学习融合判别模型
作者:
基金项目:

国家自然科学基金(82072043); 福建省自然科学基金(2020J01163)


Deep Learning Fusion Discrimination Model for Wearable Gait Patterns
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为有效提高鉴别可穿戴传感数据步态模式的准确度, 本文提出一种将卷积神经网络和长短时记忆神经网络相融合的深度学习步态模式判别新模型, 该模型充分利用卷积神经网络所具获取最具数据局部空间特征和长短时记忆神经网络模型所具获取数据内在特征时间相关性优异特性, 有效挖掘隐含于高维性、非线性、随机性可穿戴传感时序步态数据与步态模式变化密切相关的时-空步态特征, 提高步态模式分类性能. 采用美国加州大学UCI数据库HAR数据集评价本文所提模型的有效性, 实验结果表明, 本文所提模型可有效获取内嵌于可穿戴传感步态数据的时-空步态特征, 分类准确率可达91.45%、精确率可达91.54%以及召回率可达91.53%, 分类性能显著优于传统机器学习模型, 为准确鉴别可穿戴传感数据步态模式提供一个新的解决方案.

    Abstract:

    In order to improve the accuracy of gait pattern identification for wearable sensor data, we propose a new model of deep learning-based gait pattern identification, which combines a convolutional neural network with a long short-term memory neural network in this study. This model makes full use of the local spatial features of data obtained by a convolution neural network and the excellent correlation of intrinsic feature time of data obtained by a long short-term memory neural network model. It can effectively mine the temporal-spatial gait features implied by high-dimensional, nonlinear, and random temporal gait data of wearable sensors which are closely related to gait pattern changes, improving the model’s classification performance of gait patterns. The UCI HAR data set from University of California is used to validate the proposed model. The experimental results show that the model can effectively collect temporal-spatial gait features embedded in the gait data of wearable sensors. This can reach classification accuracy of 91.45%, precision of 91.54%, and recall of 91.53%, signaling significantly better classification performance than that of traditional machine learning models, which serves as a new scheme for the accurate gait pattern identification of wearable sensor data.

    参考文献
    [1] Alemayoh TT, Lee JH, Okamoto S. Deep learning based real-time daily human activity recognition and its implementation in a smartphone. 2019 16th International Conference on Ubiquitous Robots (UR). Jeju, Republic of Korea. 2019. 179-182.
    [2] Prince J, Arora S, de Vos M. Big data in Parkinson’s disease: Using smartphones to remotely detect longitudinal disease phenotypes. Physiological Measurement, 2018, 39(4): 044005. [doi: 10.1088/1361-6579/aab512
    [3] Thapar D, Jaswal G, Nigam A, et al. Gait metric learning siamese network exploiting dual of spatio-temporal 3D-CNN intra and LSTM based inter gait-cycle-segment features. Pattern Recognition Letters, 2019, 125: 646-653. [doi: 10.1016/j.patrec.2019.07.008
    [4] Seyfioğlu MS, Gürbüz SZ, Özbayoğlu AM, et al. Deep learning of micro-Doppler features for aided and unaided gait recognition. 2017 IEEE Radar Conference. Seattle, WA, USA. 2017. 1125-1130.
    [5] Sprager S, Juric MB. Inertial sensor-based gait recognition: A review. Sensors, 2015, 15(9): 22089-22127. [doi: 10.3390/s150922089
    [6] Watanabe Y. Influence of holding smart phone for acceleration-based gait authentication. Proceedings of the 2014 Fifth International Conference on Emerging Security Technologies. Alcala de Henares, Spain. 2014. 30-33.
    [7] Choi S, Youn IH, LeMay R, et al. Biometric gait recognition based on wireless acceleration sensor using k-nearest neighbor classification. Proceedings of the 2014 International Conference on Computing, Networking and Communications (ICNC). Honolulu, HI, USA. 2014. 1091-1095.
    [8] Bao L, Intille SS. Activity recognition from user-annotated acceleration data. Second International Conference on Pervasive Computing. Linz/Vienna, Austria. 2004. 1-17.
    [9] Tahafchi P, Judy JW. Freezing-of-gait detection using wearable sensor technology and Possibilistic K-nearest-neighbor algorithm. 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Berlin, Germany. 2019. 4246-4249.
    [10] Nickel C, Brandt H, Busch C. Benchmarking the performance of SVMs and HMMs for accelerometer-based biometric gait recognition. 2011 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). Bilbao, Spain. 2011. 281-286.
    [11] Nickel C, Wirtl T, Busch C. Authentication of smartphone users based on the way they walk using k-NN algorithm. 2012 Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Piraeus, Greece. 2012. 16-20.
    [12] Zou Q, Wang YL, Zhao Y, et al. Deep learning based gait recognition using smartphones in the wild. arXiv: 1811.00338, 2018.
    [13] Ding Z, Yang CF, Xing K, et al. The real time gait phase detection based on long short-term memory. 2018 IEEE Third International Conference on Data Science in Cyberspace (DSC). Guangzhou, China. 2018. 33-38.
    [14] Anguita D, Ghio A, Oneto L, et al. A public domain dataset for human activity recognition using smartphones. Proceedings of the 2013 European Symposium on Artificial Neural Networks. Bruges, Belgium. 2013. 437-442.
    [15] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, NV, USA. 2012. 1097-1105.
    [16] Mazilu S, Hardegger M, Zhu Z, et al. Online detection of freezing of gait with smartphones and machine learning techniques. 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops. San Diego, CA, USA. 2012. 123-130.
    [17] Scherer D, Muller A, Behnke S. Evaluation of pooling operations in convolutional architectures for object recognition. 20th International Conference on Artificial Neural Networks. Thessaloniki, Greece. 2010. 92-101.
    [18] Wang C, Yang HJ, Bartz C, et al. Image captioning with deep bidirectional LSTMs. Proceedings of the 24th ACM International Conference on Multimedia. Amsterdam, the Netherlands. 2016. 988-997.
    [19] Gers FA, Schraudolph NN, Schmidhuber J. Learning precise timing with LSTM recurrent networks. The Journal of Machine Learning Research, 2003, 3: 115-143
    [20] Fernandez-Lopez P, Liu-Jimenez J, Kiyokawa K, et al. Recurrent neural network for inertial gait user recognition in smartphones. Sensors, 2019, 19(18): 4054. [doi: 10.3390/s19184054
    [21] Jun K, Lee Y, Lee S, et al. Pathological gait classification using Kinect v2 and gated recurrent neural networks. IEEE Access, 2020, 8: 139881-139891. [doi: 10.1109/ACCESS.2020.3013029
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谈巧玲,吴建宁.可穿戴传感步态模式深度学习融合判别模型.计算机系统应用,2021,30(5):282-289

复制
分享
文章指标
  • 点击次数:980
  • 下载次数: 2361
  • HTML阅读次数: 1395
  • 引用次数: 0
历史
  • 收稿日期:2020-09-21
  • 最后修改日期:2020-10-13
  • 在线发布日期: 2021-05-06
文章二维码
您是第11326053位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号