基于多图时空图卷积神经网络的网约车需求预测
作者:
基金项目:

国家自然科学基金(61803339); 浙江省自然科学基金(LQ18F030011); 浙江省重点研发计划(2019C03096)


Prediction of Ride-Hailing Demand Based on Multi-Graph Spatial-Temporal Graph CNN
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着时代发展, 网约车已经逐渐成为当今社会的重要出行方式. 这项新的出行方式大大降低了出行成本, 使人们的生活更加便捷. 网约车需求预测是人工智能交通系统的重要组成部分, 有着良好的应用价值, 但传统的研究在建模时, 忽略了目的地和不同地区的社会属性相似性的影响, 使得模型的特征不全面, 算法预测准确率较低. 针对上述问题, 本文提出了一种多图时空图卷积网络 (Multi-Graph Spatial-Temporal Graph Convolution Neural network, MGSTGCN), 以解决网约车需求预测问题. 该网络由空间与时间两个组件构成, 空间问题的网络采用图卷积来对地理信息、移动信息与社会属性相似性进行建模, 时间问题则使用注意力机制与LSTM网络结合进行处理. 实验中, 我们与四种主流网络模型进行对比分析, 结果表明该模型可以更有效地捕获网约车需求数据的时间与空间的特征, 提高预测的准确度.

    Abstract:

    With the development of the times, online car-hailing has gradually become an important mode of travel in today’s society. This new travel mode greatly reduces the travel costs and makes people’s lives more convenient. Online car-hailing demand forecast is an important part of the artificial intelligence transport system and has high application value. However, traditional research ignores the impact of the social attribute similarity between the destination and different regions when modeling, making the characteristics of the models incomprehensive and the forecast accuracy of the algorithms low. In response to the above problems, a Multi-Graph Spatial-Temporal Graph Convolution Neural network (MGSTGCN) is proposed to solve the forecast problem of online car-hailing demand. The network consists of spatial and temporal components. The network associated with spatial problems models the similarity of geographic information, mobile information, and social attributes through graph convolution, and the temporal problems are processed by combining the attention mechanism with the LSTM network. In the experiments, we comparatively analyze the proposed model with four mainstream network models, and the results show that this model can more effectively capture the spatial-temporal characteristics of online ride-hailing demand data and increase the forecast accuracy.

    参考文献
    [1] Anwar A, Volkov M, Rus D. ChangiNOW: A mobile application for efficient taxi allocation at airports. Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013). Hague, the Netherlands. 2013. 694-701.
    [2] Tong YX, Chen YQ, Zhou ZM, et al. The simpler the better: A unified approach to predicting original taxi demands based on large-scale online platforms. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax, NS, Canada. 2017. 1653-1662.
    [3] 曹成涛, 徐建闽. 基于PSO-SVM的短期交通流预测方法. 计算机工程与应用, 2007, 43(15): 12-14. [doi: 10.3321/j.issn:1002-8331.2007.15.004
    [4] Zhang JB, Zheng Y, Qi DK. Deep spatio-temporal residual networks for citywide crowd flows prediction. Proceedings of the 31th AAAI conference on Artificial Intelligence. San Francisco, CA, USA. 2017. 1665-1661.
    [5] 段宗涛, 张凯, 杨云, 等. 基于深度CNN-LSTM-ResNet组合模型的出租车需求预测. 交通运输系统工程与信息, 2018, 18(4): 215-223
    [6] Chu J, Qian K, Wang X, et al. Passenger demand prediction with cellular footprints. Proceedings of the 15th Annual IEEE International Conference on Sensing, Communication, and Networking. Hong Kong, China. 2018. 1-9.
    [7] 冯宁, 郭晟楠, 宋超, 等. 面向交通流量预测的多组件时空图卷积网络. 软件学报, 2019, 30(3): 759-769. [doi: 10.13328/j.cnki.jos.005697
    [8] Wang YD, Yin HZ, Chen HX, et al. Origin-destination matrix prediction via graph convolution: A new perspective of passenger demand modeling. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage, AK, USA. 2019.1227-1235.
    [9] Hamilton WL, Ying R, Leskovec J. Inductive representation learning on large graphs. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, CA, USA. 2017. 1024-1034.
    [10] 路民超, 李建波, 逄俊杰, 等. 面向出租车需求预测的多因素时空图卷积网络. 计算机工程与应用, 2020, 56(24): 266-273
    [11] Lai GK, Chang WC, Yang YM, et al. Modeling long- and short-term temporal patterns with deep neural networks. Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. Ann Arbor, MI, USA. 2018. 95-104.
    [12] Seo Y, Defferrard M, Vandergheynst P, et al. Structured sequence modeling with graph convolutional recurrent networks. Proceedings of the 25th International Conference on Neural Information Processing. Siem Reap, Cambodia. 2018. 362-373.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周云彤,熊卫华,姜明.基于多图时空图卷积神经网络的网约车需求预测.计算机系统应用,2021,30(5):214-218

复制
分享
文章指标
  • 点击次数:1240
  • 下载次数: 2426
  • HTML阅读次数: 3826
  • 引用次数: 0
历史
  • 收稿日期:2020-09-19
  • 最后修改日期:2020-10-12
  • 在线发布日期: 2021-05-06
文章二维码
您是第11207641位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号