基于LBP和SVM的疼痛表情识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山西省重点研发项目(201903D121058)


Pain Expression Recognition Based on LBP and SVM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对面部疼痛表情估计是疼痛评估中一条有效的途径, 文中融合局部二元模式(LBP)分块加权和多尺度分区的特征提取方法用于面部疼痛表情识别. 首先对预处理的图像在分块提取直方图后进行加权, 然后采用多尺度分区直方图统计特征提取方法, 串接不同尺寸分区块的直方图并级联分块加权的直方图为整个图像的特征向量, 最后用主成分分析(PCA)的方法对特征向量进行降维后, 输入支持向量机(SVM)进行分类识别, 通过在自建的疼痛表情图像数据库进行实验, 表明与传统的特征提取和融合前的特征提取方法相比, 该方法能大大提高对疼痛表情的识别率, 为目前对疼痛表情的识别与研究提供了一条有效的途径.

    Abstract:

    Estimation of facial pain expressions is effective for pain assessment. In this study, facial pain is recognized through a feature extraction method integrating block weighted Local Binary Pattern (LBP) and multi-scale partition. First, the pre-processed image is weighted after the histogram is extracted in blocks. Then statistical features of histograms are extracted in multi-scale partitions to concatenate them with different sizes of blocks and cascade the block weighted histograms into the feature vector of the entire image. Finally, the Principal Component Analysis (PCA) is relied on to reduce the dimensionality of the feature vector, and the Support Vector Machine (SVM) is used for classification and recognition. The experiments on a self-built database of pain expression images prove that the proposed method, compared with traditional feature extraction methods and those before fusion, greatly improves the recognition rate of pain expressions. Then it can serve as an effective way for studying and recognizing pain expressions.

    参考文献
    相似文献
    引证文献
引用本文

郑建伟,刘新妹,殷俊龄.基于LBP和SVM的疼痛表情识别.计算机系统应用,2021,30(4):111-117

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-21
  • 最后修改日期:2020-09-15
  • 录用日期:
  • 在线发布日期: 2021-03-31
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号