基于Harary图生成树的部分重复码构造
作者:

Fractional Repetition Codes Construction Based on Spanning Trees of Harary Graph
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对部分重复码的有效修复问题, 本文基于Harary图生成树构造出了一种新型的部分重复(Fractional Repetition based on Spanning trees of Harary graph, FRSH)码. 实验结果表明, 相较于现有的里所(Read-Solomon, RS)码和简单再生码(Simple Regeneration Codes, SRC), FRSH码在修复带宽开销、修复局部性等方面得到了更低的开销, 且改善了修复效率, 并将故障节点的修复时间缩短.

    Abstract:

    Aiming at the low efficiency in repairing failed nodes of fractional repetition codes, this study proposed a construction algorithm of Fractional Repetition codes based on Spanning trees of Harary graph (FRSH). As a result, FRSH codes have lower computational overhead in repairing bandwidth overhead and locality than RS codes and SRC. Besides, FRSH codes are more efficient and spend less time in repairing failed nodes, compared with the other two codes.

    参考文献
    [1] Shafer J, Rixner S, Cox AL. The hadoop distributed filesystem: Balancing portability and performance. 2010 IEEE International Symposium on Performance Analysis of Systems & Software (ISPASS). White Plains, NY, USA. 2010. 122–133.
    [2] Liu Y, Vlassov V. Replication in distributed storage systems: State of the art, possible directions, and open issues. 2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. Beijing, China. 2013. 225–232.
    [3] Silberstein M, Ganesh L, Wang Y, et al. Lazy means smart: Reducing repair bandwidth costs in erasure-coded distributed storage. Proceedings of International Conference on Systems and Storage. New York City, NY, USA. 2014. 1–7.
    [4] Papailiopoulos DS, Dimakis AG, Cadambe VR. Repair optimal erasure codes through hadamard designs. IEEE Transactions on Information Theory, 2013, 59(5): 3021–3037. [doi: 10.1109/TIT.2013.2241819
    [5] Dimakas AG, Godfrey PB, Wainwright MJ, et al. Network coding for distributed storage systems. 26th IEEE International Conference on Computer Communications (INFOCOM 2007). Spain. 2007. 2000–2008.
    [6] Rawat AS, Silberstein N, Koyluoglu OO, et al. Optimal locally repairable codes with local minimum storage regeneration via rank-metric codes. 2013 Information Theory and Applications Workshop (ITA). San Diego, CA, USA. 2013. 1–8.
    [7] El Rouayheb S, Ramchandran K. Fractional repetition codes for repair in distributed storage systems. 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton). Allerton, IL, USA. 2010. 1510–1517.
    [8] Rai BK, Dhoorjati V, Saini L, et al. On adaptive distributed storage systems. 2015 IEEE International Symposium on Information Theory (ISIT). Hong Kong, China. 2015. 1482–1486.
    [9] Wang J, Wang TT, Liu XY, et al. Locally repairable codes based on fractional repetition codes in distributed storage systems. 14th International Conference on Wireless Communications, Networking and Mobile Computing. Lancaster, UK. 2018. 578–587.
    [10] Olmez O, Ramamoorthy A. Repairable replication-based storage systems using resolvable designs. 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton). Monticello, IL, USA. 2012. 1174–1181.
    [11] Olmez O, Ramamoorthy A. Constructions of fractional repetition codes from combinatorial designs. 2013 Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA, USA. 2013. 647–651.
    [12] Zhu B, Li H, Hou HX, et al. Replication-based distributed storage systems with variable repetition degrees. 2014 Twentieth National Conference on Communications (NCC). Kanpur, India. 2014. 1–5.
    [13] Silberstein N, Etzion T. Optimal fractional repetition codes based on graphs and designs. IEEE Transactions on Information Theory, 2015, 61(8): 4164–4180. [doi: 10.1109/TIT.2015.2442231
    [14] Aydinian H, Boche H. Fractional repetition codes based on partially ordered sets. 2017 IEEE Information Theory Workshop (ITW). Kaohsiung, China. 2017. 51–55.
    [15] Papailiopoulos DS, Luo JQ, Dimakis AG, et al. Simple regenerating codes: Network coding for cloud storage. 2012 Proceedings IEEE INFOCOM. Orlando, FL, USA. 2012. 2801–2805.
    [16] Kashyap N, Mukherjee M, Sankarasubramaniam Y. On the secret key capacity of the Harary graph PIN model. 2013 National Conference on Communications (NCC). New Delhi, India. 2013. 1–5.
    [17] 余春雷, 王静, 王秘, 等. 图因子分解的部分重复码构造. 中国科技论文, 2019, 14(11): 1260–1264
    引证文献
引用本文

张鑫楠,沈克勤,孙伟,何亚锦.基于Harary图生成树的部分重复码构造.计算机系统应用,2021,30(4):241-246

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-08-10
  • 最后修改日期:2020-08-28
  • 在线发布日期: 2021-03-31
文章二维码
您是第11206140位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号