基于文件分时索引的大规模流量实时IoT终端识别算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

福建省高校产学研合作科技计划重大项目(2016H6007)


Real-Time IoT Terminal Identification Algorithm for Large-Scale Flow Based on Time-Sharing Index of Files
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着5G时代的来临, 诸如工业区, 校园网等开放性园区网络中存在大量的物联网(Internet of Things, IoT)终端, IoT终端由于其数据流量巨大, 伪造IoT终端进行网络攻击的问题日益严重. 现有IoT终端识别技术在面对海量数据时计算资源的成本逐渐提高. 针对以上问题, 提出了基于文件分时索引的大规模流量实时IoT终端识别算法. 首先, 建立内存分时索引元数据; 其次, 使用文件的分时索引来存储构建会话的中间数据; 最后, 控制内存分时索引元数据触发从少量文件中提取特征并进行IoT终端识别. 实验中, 在不损失IoT终端识别算法精度条件下, 仅消耗少量磁盘, 可将内存消耗降低92%. 实验结果表明, 该技术能够用于实时IoT终端识别框架中.

    Abstract:

    With the advent of the 5G era, there exist a large number of Internet of Things (IoT) terminals in the open campus network such as industrial area and campus network. Due to the huge data flow of IoT terminals, the problem of counterfeiting IoT terminals for network attack becomes increasingly serious, and the cost of computing resources of the existing IoT terminals identification technologies in the face of massive data increases gradually. To solve these problems, we propose a real-time IoT terminals identification algorithm for large-scale flow based on the time-sharing index of files. Firstly, the metadata for the time-sharing index of memory is established. Secondly, the time-sharing index of files is used to store the intermediate data of the construction session. Thirdly, the metadata trigger for the time-sharing index of memory is controlled to extract features from a small number of files and perform IoT terminals identification. In the experiment, on the premise of maintaining the accuracy of the IoT terminals identification algorithm, only a little disk space is occupied and the memory consumption is reduced by 92%. These results show that the proposed algorithm can be used in the framework of real-time IoT terminals identification.

    参考文献
    相似文献
    引证文献
引用本文

徐彭娜,彭行雄.基于文件分时索引的大规模流量实时IoT终端识别算法.计算机系统应用,2021,30(2):207-212

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-06-24
  • 最后修改日期:2020-07-21
  • 录用日期:
  • 在线发布日期: 2021-01-29
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号