结合形态学重建和超像素的多特征FCM分割算法
作者:
基金项目:

国家自然科学基金(61703278)


Multi-Feature FCM Segmentation Algorithm Combining Morphological Reconstruction and Superpixels
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对现有模糊聚类分割算法对噪声的鲁棒性差且提取的图像特征不充分等问题, 本文提出了一种结合形态学重建和超像素的多特征模糊 C-均值(FCM)分割算法. 首先, 利用形态学闭合重建处理原图像, 提高了算法的鲁棒性和细节保护能力. 其次, 采用Mean-Shift方法预分割重建图像, 获得一组超像素区域. 再次, 提取重建图像各像素的颜色特征、纹理特征和梯度特征, 利用平均策略定义各超像素的颜色特征、纹理特征和梯度特征, 组成多维特征向量. 最后, 运用最大熵正则化的加权模糊 C-均值算法(EWFCM)的框架, 以超像素为单位, 以核诱导距离作为距离度量来聚类多维特征向量. 选取BSDS300数据集中的6幅图像完成实验对比. 结果表明, 本文算法具有更高的分割精度.

    Abstract:

    Aiming at the problems in the existing fuzzy clustering segmentation algorithms, such as poor noise robustness and insufficient image feature extraction, we propose a multi-feature FCM segmentation algorithm combining morphological reconstruction and superpixels. First, the original image is subject to morphological closing reconstruction, which improves the robustness and detail-preserving ability of the algorithm. Secondly, the mean-shift method is employed to pre-segment the reconstructed image and obtain a set of superpixels. Thirdly, the color, texture and gradient features of each superpixel in the reconstructed image are extracted and defined by an averaging strategy to form the multi-dimensional feature vectors. Finally, these vectors are clustered by using the framework of the EWFCM algorithm, taking superpixels as the unit and the nuclear induced distance as the distance measure. Furthermore, six images in the BSDS300 data set are selected for the experimental comparison. The results show that the algorithm in this study has higher segmentation accuracy.

    参考文献
    [1] Chen JQ, Guan BL, Wang HL, et al. Image thresholding segmentation based on two dimensional histogram using gray level and local entropy information. IEEE Access, 2018, 6: 5269–5275. [doi: 10.1109/ACCESS.2017.2757528
    [2] 付琼莹, 余旭初, 张鹏强, 等. 结合极限学习机的高光谱影像聚类算法. 计算机辅助设计与图形学学报, 2017, 29(8): 1416–1424. [doi: 10.3969/j.issn.1003-9775.2017.08.004
    [3] Hettiarachchi R, Peters JF. Voronoi region-based adaptive unsupervised color image segmentation. Pattern Recognition, 2017, 65: 119–135. [doi: 10.1016/j.patcog.2016.12.011
    [4] Ren DY, Jia ZH, Yang J, et al. A practical GrabCut color image segmentation based on Bayes classification and simple linear iterative clustering. IEEE Access, 2017, 5: 18480–18487. [doi: 10.1109/ACCESS.2017.2752221
    [5] Bezdek JC, Ehrlich R, Full W. FCM: The fuzzy C-means clustering algorithm. Computers & Geosciences, 1984, 10(2–3): 191–203
    [6] Ahmed MN, Yamany SM, Mohamed N, et al. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data. IEEE Transactions on Medical Imaging, 2002, 21(3): 193–199. [doi: 10.1109/42.996338
    [7] Chen SC, Zhang DQ. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2004, 34(4): 1907–1916. [doi: 10.1109/TSMCB.2004.831165
    [8] Zhong YF, Ma AL, Zhang LP. An adaptive memetic fuzzy clustering algorithm with spatial information for remote sensing imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(4): 1235–1248. [doi: 10.1109/JSTARS.2014.2303634
    [9] Lei T, Jia XH, Zhang YN, et al. Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Transactions on Fuzzy Systems, 2018, 26(5): 3027–3041. [doi: 10.1109/TFUZZ.2018.2796074
    [10] Belongie S, Carson C, Greenspan H, et al. Color- and texture-based image segmentation using EM and its application to content-based image retrieval. Proceedings of the 6th International Conference on Computer Vision. Bombay, India. 1998. 675–682.
    [11] Yu H, Jiao LC, Liu F. CRIM-FCHO: SAR image two-stage segmentation with multifeature ensemble. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2400–2423. [doi: 10.1109/TGRS.2015.2501162
    [12] Rajaby E, Ahadi SM, Aghaeinia H. Robust color image segmentation using fuzzy c-means with weighted hue and intensity. Digital Signal Processing, 2016, 51: 170–183. [doi: 10.1016/j.dsp.2016.01.010
    [13] Gong MG, Liang Y, Shi J, et al. Fuzzy c-means clustering with local information and kernel metric for image segmentation. IEEE Transactions on Image Processing, 2013, 22(2): 573–584. [doi: 10.1109/TIP.2012.2219547
    [14] Shang RH, Tian PP, Jiao LC, et al. A spatial fuzzy clustering algorithm with kernel metric based on immune clone for SAR image segmentation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(4): 1640–1652. [doi: 10.1109/JSTARS.2016.2516014
    [15] Comaniciu D, Meer P. Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5): 603–619. [doi: 10.1109/34.1000236
    [16] Zhou J, Chen L, Chen CLP, et al. Fuzzy clustering with the entropy of attribute weights. Neurocomputing, 2016, 198: 125–134. [doi: 10.1016/j.neucom.2015.09.127
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马喃喃,刘丛.结合形态学重建和超像素的多特征FCM分割算法.计算机系统应用,2021,30(2):194-200

复制
分享
文章指标
  • 点击次数:1066
  • 下载次数: 2213
  • HTML阅读次数: 1341
  • 引用次数: 0
历史
  • 收稿日期:2020-06-22
  • 最后修改日期:2020-07-21
  • 在线发布日期: 2021-01-29
文章二维码
您是第11206990位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号