基于人脸图像和脑电的连续情绪识别方法
作者:
基金项目:

广州市科技计划重点领域研发计划(202007030005); 广东省自然科学基金面上项目(2019A1515011375); 广东大学生科技创新培育专项资金(“攀登计划”专项资金) (pdjh2020a0145)


Continuous Emotion Recognition Based on Facial Expressions and EEG
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    基于多模态生理数据的连续情绪识别技术在多个领域有重要用途, 但碍于被试数据的缺乏和情绪的主观性, 情绪识别模型的训练仍需更多的生理模态数据, 且依赖于同源被试数据. 本文基于人脸图像和脑电提出了多种连续情绪识别方法. 在人脸图像模态, 为解决人脸图像数据集少而造成的过拟合问题, 本文提出了利用迁移学习技术训练的多任务卷积神经网络模型. 在脑电信号模态, 本文提出了两种情绪识别模型: 第一个是基于支持向量机的被试依赖型模型, 当测试数据与训练数据同源时有较高准确率; 第二个是为降低脑电信号的个体差异性和非平稳特性对情绪识别的影响而提出的跨被试型模型, 该模型基于长短时记忆网络, 在测试数据和训练数据不同源的情况下也具有稳定的情绪识别性能. 为提高对同源数据的情绪识别准确率, 本文提出两种融合多模态决策层情绪信息的方法: 枚举权重方法和自适应增强方法. 实验表明: 当测试数据与训练数据同源时, 在最佳情况下, 双模态情绪识别模型在情绪唤醒度维度和效价维度的平均准确率分别达74.23%和80.30%; 而当测试数据与训练数据不同源时, 长短时记忆网络跨被试型模型在情绪唤醒度维度和效价维度的准确率分别为58.65%和51.70%.

    Abstract:

    Continuous emotion recognition based on multimodal physiological data plays an important role in many fields. However, it needs more physiological data to train emotion recognition models due to the lack of subjects’ data and subjectivity of emotion, and it is largely affected by homologous subjects’ data. In this study, we propose multiple emotion recognition methods based on facial expressions and EEG. Regarding the modality of facial images, we propose a multi-task convolutional neural network trained by transfer learning to avoid over-fitting induced by small datasets of facial images. With respect to the modality of EEG, we propose two emotion recognition models. The first is a subject-dependent model based on support vector machine, possessing high accuracy when the validation and training data are homogeneous. The second is a cross-subject model for reducing the impact caused by the individual variation and non-stationarity of EEG. It is based on a long short-term memory network, performing stably under the circumstance that validation and training data are heterogeneous. To improve the accuracy of emotion recognition for homogeneous data, we propose two methods for decision-level fusion of multimodal emotion prediction: Weight enumeration and adaptive boost. According to the experiments, when the validation and training data are homogeneous, under the best circumstance, the average accuracy that multimodal emotion recognition models reached in both arousal and valence dimensions were 74.23% and 80.30%; as the validation and training data are heterogeneous, the accuracy that the cross-subject model reached in both arousal and valence dimensions are 58.65% and 51.70%.

    参考文献
    [1] Barrett LF. Solving the emotion paradox: Categorization and the experience of emotion. Personality and Social Psychology Review, 2006, 10(1): 20–46. [doi: 10.1207/s15327957pspr1001_2
    [2] Poria S, Cambria E, Bajpai R, et al. A review of affective computing: From unimodal analysis to multimodal fusion. Information Fusion, 2017, 37: 98–125. [doi: 10.1016/j.inffus.2017.02.003
    [3] Posner J, Russell JA, Peterson BS. The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Development and Psychopathology, 2005, 17(3): 715–734. [doi: 10.1017/S0954579405050340
    [4] Ekman P, Friesen WV. Constants across cultures in the face and emotion. Journal of Personality and Social Psychology, 1971, 17(2): 124–129. [doi: 10.1037/h0030377
    [5] 叶继华, 祝锦泰, 江爱文, 等. 人脸表情识别综述. 数据采集与处理, 2020, 35(1): 21–34. [doi: 10.16337/j.1004-9037.2020.01.002
    [6] Meng D, Cao GT, He ZH, et al. Facial expression recognition based on LLENet. Proceedings of 2016 IEEE International Conference on Bioinformatics and Biomedicine. Shenzhen, China. 2016. 1915–1917.
    [7] Roweis ST, Saul LK. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5500): 2323–2326. [doi: 10.1126/science.290.5500.2323
    [8] 朱明旱, 罗大庸. 2DFLD与LPP相结合的人脸和表情识别方法. 模式识别与人工智能, 2009, 22(1): 60–63. [doi: 10.16451/j.cnki.issn1003-6059.2009.01.011
    [9] Mollahosseini A, Chan D, Mahoor MH. Going deeper in facial expression recognition using deep neural networks. Proceedings of 2016 IEEE Winter Conference on Applications of Computer Vision. Lake Placid, NY, USA. 2016. 1–10.
    [10] 张冠华, 余旻婧, 陈果, 等. 面向情绪识别的脑电特征研究综述. 中国科学: 信息科学, 2019, 49(9): 1097–1118. [doi: 10.1360/N112018-00337
    [11] St. Louis EK, Frey LC, Britton JW, et al. ElectroEncephaloGraphy (EEG): An Introductory Text and Atlas of Normal and Abnormal Findings in Adults, Children, and Infants. Chicago: American Epilepsy Society, 2016.
    [12] Yazdani A, Lee JS, Ebrahimi T. Implicit emotional tagging of multimedia using EEG signals and brain computer interface. Proceedings of the First SIGMM Workshop on Social Media. Beijing, China. 2009. 81–88.
    [13] Georgieva O, Milanov S, Georgieva P, et al. Learning to decode human emotions from event-related potentials. Neural Computing and Applications, 2015, 26(3): 573–580. [doi: 10.1007/s00521-014-1653-6
    [14] 郑伟龙, 石振锋, 吕宝粮. 用异质迁移学习构建跨被试脑电情感模型. 计算机学报, 2020, 43(2): 177–189. [doi: 10.11897/SP.J.1016.2020.00177
    [15] Viola P, Jones MJ. Robust real-time face detection. International Journal of Computer Vision, 2004, 57(2): 137–154. [doi: 10.1023/B:VISI.0000013087.49260.fb
    [16] 江伟坚, 郭躬德, 赖智铭. 基于新Haar-like特征的Adaboost人脸检测算法. 山东大学学报(工学版), 2014, 44(2): 43–48. [doi: 10.6040/j.issn.1672-3961.1.2013.003
    [17] Goodfellow IJ, Erhan D, Carrier PL, et al. Challenges in representation learning: A report on three machine learning contests. Neural Networks, 2015, 64: 59–63. [doi: 10.1016/j.neunet.2014.09.005
    [18] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 2017, 60(6): 84–90. [doi: 10.1145/3065386
    [19] Bhatnagar G, Wu QMJ, Raman B. A new fractional random wavelet transform for fingerprint security. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 2012, 42(1): 262–275. [doi: 10.1109/TSMCA.2011.2147307
    [20] Duan KB, Rajapakse JC, Wang HY, et al. Multiple SVM-RFE for gene selection in cancer classification with expression data. IEEE Transactions on Nanobioscience, 2005, 4(3): 228–234. [doi: 10.1109/tnb.2005.853657
    [21] Chao H, Dong L, Liu YL, et al. Emotion recognition from multiband EEG signals using CapsNet. Sensors, 2019, 19(9): 2212. [doi: 10.3390/s19092212
    [22] Huang HP, Hu ZC, Wang WM, et al. Multimodal emotion recognition based on ensemble convolutional neural network. IEEE Access, 2020, 8: 3265–3271. [doi: 10.1109/ACCESS.2019.2962085
    [23] Yin Z, Wang YX, Liu L, et al. Cross-subject EEG feature selection for emotion recognition using transfer recursive feature elimination. Frontiers in Neurorobotics, 2017, 11: 19. [doi: 10.3389/fnbot.2017.00019
    [24] Bradley MM, Lang PJ. Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 1994, 25(1): 49–59. [doi: 10.1016/0005-7916(94)90063-9
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李瑞新,蔡兆信,王冰冰,潘家辉.基于人脸图像和脑电的连续情绪识别方法.计算机系统应用,2021,30(2):1-11

复制
分享
文章指标
  • 点击次数:1398
  • 下载次数: 3748
  • HTML阅读次数: 2877
  • 引用次数: 0
历史
  • 收稿日期:2020-06-13
  • 最后修改日期:2020-07-10
  • 在线发布日期: 2021-01-29
文章二维码
您是第11414827位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号