Abstract:The analysis of safety production accidents is of great significance to the improvement of emergency management ability. Based on the semantic analysis of safety production cases, Word2Vec embedding technology and clustering model are used, CBOW + negative sampling technology is used to realize word vector, and the data characteristics of safety production accident cases classification are combined, through semi-supervised learning based clustering model algorithm, according to the characteristics of the accident nature, an optimized initial clustering center algorithm is proposed, and K-means clustering algorithm is used to classify the text cases of safety accidents. The experimental results show that the proposed method can realize the classification of accident cases, and can be used for reference in the multi-dimensional analysis of accident.